CLINICAL IMMUNOLOGY
The significance of IL-1β +3953C>T, IL-6 -174G>C and -596G>A, TNF-α -308G>A gene polymorphisms and 86 bp variable number tandem repeat polymorphism of IL-1RN in bronchopulmonary dysplasia in infants born before 32 weeks of gestation
More details
Hide details
Submission date: 2017-01-25
Acceptance date: 2017-03-20
Publication date: 2017-06-08
Cent Eur J Immunol 2017;42(3):287-293
KEYWORDS
ABSTRACT
Introduction: Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects primarily preterm infants. Genetic factors are also taken into consideration in the pathogenesis of BPD. Genetic predispositions to higher production of inflammation mediators seem to be crucial.
Material and methods: The aim of this study was to evaluate the possible relationship between polymorphisms: interleukin-1β +3953 C>T, interleukin-6 -174 G>C and -596 G>A, tumour necrosis factor -308 G>A and interleukin-1RN VNTR 86bp and the occurrence of BPD in a population of 100 preterm infants born from singleton pregnancy, before 32+0 weeks of gestation, exposed to antenatal steroids therapy, and without congenital abnormalities.
Results: In the study population BPD was diagnosed in 36 (36%) newborns. Among the studied polymorphisms we found the higher prevalence for BPD developing of the following genotypes: 1/2 (OR 1.842 [0.673-5.025] and 2/2 IL-1RN (OR 1.75 [0.418-6.908] 86bpVNTR; GC (2.222 [0.658-8.706]) and CC IL-6 -174G>C (1.6 [0.315-8.314]) and GA (2.753 [0.828-10.64]) and AA (1.5 [0.275-8.067] IL-6 -596G>A), GA 1.509 (0.515-4.301) TNF-α -308G>A. However, these finding were not statistically significant.
Conclusions: Genetic factors are undeniably involved in the pathogenesis of BPD. In the times of individualised therapy finding genes responsible for BPD might allow the development of new treatment strategies. A new way of specific therapy could ensure the reduction of complications connected with BPD and treatment costs.
REFERENCES (34)
1.
Northway WH, Rosan RC, Porter DY (1967): Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276: 357-368.
2.
McEvoy CT, Aschner JL (2015): The Natural History of Bronchopulmonary Dysplasia: The Case for Primary Prevention. Clin Perinatol 42: 911-931.
3.
Jensen EA, Schmidt B (2014): Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol 100: 145-157.
4.
Stoll BJ, Hansen NI, Bell EF, et al. (2010): Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126: 443-456.
5.
Mourani PM, Abman SH (2013): Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr 25: 329-337.
6.
Klinger G, Sokolover N, Boyko V, et al. (2013): Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants. Am J Obs Gynecol 208: 115 e1-9.
7.
Gien J, Kinsella JP (2011): Pathogenesis and treatment of bronchopulmonary dysplasia. Curr Opin Pediatr 23: 305-313.
8.
Bhandari V, Bizzarro MJ, Shetty A, et al. (2006): Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 117: 1901-1906.
9.
Shaw GM, O’Brodovich HM (2013): Progress in understanding the genetics of bronchopulmonary dysplasia. Semin Perinatol 37: 85-93.
10.
Sweet DG, Carnielli V, Greisen G, et al. (2013): European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants-2013 update. Neonatology 103: 353-368.
11.
Kumar P (2014): Use of inhaled nitric oxide in preterm infants. Pediatrics 133: 164-170.
12.
Ehrenkranz RA, Walsh MC, Vohr BR, et al. (2005): Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 116: 1353-1360.
13.
Ambalavanan N, Carlo WA, D’Angio CT, et al. (2009): Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 123: 1132-1141.
14.
Kwinta P, Bik-Multanowski M, Mitkowska Z, et al. (2008): Genetic risk factors of bronchopulmonary dysplasia. Pediatr Res 64: 682-688.
15.
Köksal N, Kayik B, Çetinkaya M, et al. (2012): Value of serum and bronchoalveolar fluid lavage pro- and anti-inflammatory cytokine levels for predicting bronchopulmonary dysplasia in premature infants. Eur Cytokine Netw 23: 29-35.
16.
Bry K, Whitsett JA, Lappalainen U (2007): IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 36: 32-42.
17.
Hogmalm A, Bry M, Strandvik B, Bry K (2014): IL-1beta expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice. Am J Physiol Lung Cell Mol Physiol 306: L23-L34.
18.
Serafin M, Kalinka J (2014): The role of chosen polymorphism of gens coding cytokines IL-1s, IL1ra, IL-6 and TNFαlpha in the pathogenesis of the preterm delivery. Ginekol i Poloznictwo 33: 9-23.
19.
Nold MF, Mangan NE, Rudloff I, et al. (2013): Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A 110: 14384-14389.
20.
Royce SG, Nold MF, Bui C, et al. (2016): Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1Ra. Am J Respir Cell Mol Biol 55: 858-868.
21.
Witkin SS, Gerber S, Ledger WJ (2002): Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis 34: 204-209.
22.
Vamvakopoulos J, Green C, Metcalfe S (2002): Genetic control of IL-1 bioactivity through differential regulation of the IL-1 receptor antagonist. Eur J Immunol 32: 2988-2996.
23.
Cakmak BC, Calkavur S, Ozkinay F, et al. (2012): Association between bronchopulmonary dysplasia and MBL2 and IL1-RN polymorphisms. Pediatr Int 54: 863-868.
24.
Rocha G, Proença E, Guedes A, et al. (2012): Cord blood levels of IL-6, IL-8 and IL-10 may be early predictors of bronchopulmonary dysplasia in preterm newborns small for gestational age. Dis Markers 33: 51-60.
25.
Ben-Ari J, Makhoul IR, Dorio RJ, et al. (2000): Cytokine response during hyperoxia: Sequential production of pulmonary tumor necrosis factor and interleukin-6 in neonatal rats. Isr Med Assoc J 2: 365-369.
26.
Hsiao C-C, Chang J-C, Tsao L-Y, et al (2017) Correlates of Elevated Interleukin-6 and 8-Hydroxy-2’-Deoxyguanosine Levels in Tracheal Aspirates from Very Low Birth Weight Infants Who Develop Bronchopulmonary Dysplasia. Pediatr Neonatol 58: 63-69.
27.
Huusko JM, Karjalainen MK, Mahlman M, et al. (2014): A study of genes encoding cytokines (IL6, IL10, TNF), cytokine receptors (IL6R, IL6ST), and glucocorticoid receptor (NR3C1) and susceptibility to bronchopulmonary dysplasia. BMC Med Genet 15: 120.
28.
Usuda T, Kobayashi T, Sakakibara S, et al. (2012): Interleukin-6 polymorphism and bronchopulmonary dysplasia risk in very low-birthweight infants. Pediatr Int 54: 471-475.
29.
Bhandari V (2014): Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. Birth Defects Res Part A Clin Mol Teratol 100: 189-201.
30.
Strassberg SS, Cristea IA, Qian D, Parton LA (2007): Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia. Pediatr Pulmonol 42: 29-36.
31.
Elhawary NA, Tayeb MT, Abdel-Ghafar S, et al. (2013): TNF-238 polymorphism may predict bronchopulmonary dysplasia among preterm infants in the Egyptian population. Pediatr Pulmonol 48: 699-706.
32.
Kazzi SNJ, Kim UO, Quasney MW, Buhimschi I (2004): Polymorphism of tumor necrosis factor-alpha and risk and severity of bronchopulmonary dysplasia among very low birth weight infants. Pediatrics 114: e243-e248.
33.
Chauhan M, Bombell S, McGuire W (2009): Tumour necrosis factor (--308A) polymorphism in very preterm infants with bronchopulmonary dysplasia: a meta-analysis. Arch Dis Child Fetal Neonatal Ed 94: F257-F259.
34.
Mailaparambil B, Krueger M, Heizmann U, et al. (2010): Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis Markers 29: 1-9.