REVIEW PAPER
The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis
 
More details
Hide details
 
Submission date: 2017-05-11
 
 
Final revision date: 2017-06-22
 
 
Acceptance date: 2017-06-26
 
 
Publication date: 2017-12-30
 
 
Cent Eur J Immunol 2017;42(4):390-398
 
KEYWORDS
ABSTRACT
The most specific autoimmunity known for rheumatoid arthritis (RA) is reflected by generation of anti-citrullinated protein antibodies (ACPA). Presence of ACPA in established RA is associated with disease severity, while generation of ACPA at early developmental phases of RA can have a strong predictive value for progressing to the full-blown disease. Hence, development of ACPA may be of crucial importance to the pathogenesis of RA. Therefore, a lot of effort has been put recently to investigate the feature of ACPA at early developmental stages of RA (before disease onset) and functional activities of these autoantibodies. Results of these studies enlarged the knowledge about the nature of ACPA, which is essential for planning the therapeutic or preventive strategies interfering with their development and pathogenic functions. In this review we describe recent evidence for a role of ACPA in the etiopathogenesis of RA and indicate key unresolved issues regarding ACPA biology that need to be clarified in the future.
REFERENCES (68)
1.
Nell VP, Machold KP, Eberl G, et al. (2004): Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology (Oxford) 43: 906-914.
 
2.
Landewé RB, Boers M, Verhoeven AC, et al. (2002): COBRA combination therapy in patients with early rheumatoid arthritis: long-term structural benefits of a brief intervention. Arthritis Rheum 46: 347-356.
 
3.
Gerlag DM, Raza K, van Baarsen LG, et al. (2012): EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann Rheum Dis 71: 638-641.
 
4.
Wang S1, Wang Y (2013): Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 1829: 1126-1135.
 
5.
Aggarwal R, Liao K, Nair R, et al. (2009): Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis. Arthritis Rheum 61: 1472-1483.
 
6.
Ioan-Facsinay A, Willemze A, Robinson DB, et al. (2008): Marked differences in fine specificity and isotype usage of the anti-citrullinated protein antibody in health and disease. Arthritis Rheum 58: 3000-3008.
 
7.
Hensvold AH, Frisell T, Magnusson PK, et al. (2017): How well do ACPA discriminate and predict RA in the general population: a study based on 12 590 population-representative Swedish twins. Ann Rheum Dis 76: 119-125.
 
8.
van der Helm-van Mil AH, Detert J, le Cessie S, et al. (2008): Validation of a prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: moving toward individualized treatment decision-making. Arthritis Rheum 58: 2241-2247.
 
9.
Rantapää-Dahlqvist S, de Jong BA, Berglin E, et al. (2003): Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48: 2741-2749.
 
10.
Nielen MM, van Schaardenburg D, Reesink HW, et al. (2006): Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann Rheum Dis 65: 535-537.
 
11.
Sokolove J, Bromberg R, Deane KD, et al. (2012): Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7: e35296.
 
12.
Jorgensen KT, Wiik A, Pedersen M, et al. (2008): Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors. Ann Rheum Dis 67: 860-866.
 
13.
Kokkonen H, Mullazehi M, Berglin E, et al. (2011): Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis.
 
14.
Arthritis Res Ther 13: R13.
 
15.
Chibnik LB, Mandl LA, Costenbader KH, et al. (2009): Comparison of threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J Rheumatol 36: 706-711.
 
16.
van de Stadt LA, de Koning MH, van de Stadt RJ, et al. (2011): Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum 63: 3226-3233.
 
17.
Bos WH, Wolbink GJ, Boers M, et al. (2010): Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann Rheum Dis 69: 490-494.
 
18.
van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, et al. (2004): Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum 50: 709-715.
 
19.
Rakieh C, Nam JL, Hunt L, et al. (2015): Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann Rheum Dis 74: 1659-1666.
 
20.
Snir O, Widhe M, von Spee C, et al. (2009): Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann Rheum Dis 68: 736-743.
 
21.
Schwenzer A, Jiang X, Mikuls TR, et al. (2016): Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann Rheum Dis 75: 1876-1883.
 
22.
Johansson L, Pratesi F, Brink M, et al. (2016): Antibodies directed against endogenous and exogenous citrullinated antigens pre-date the onset of rheumatoid arthritis. Arthritis Res Ther 18: 127.
 
23.
Shoda H, Fujio K, Shibuya M, et al. (2011): Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis. Arthritis Res Ther 13: R191.
 
24.
van Beers JJ, Willemze A, Jansen JJ, et al. (2013): ACPA fine-specificity profiles in early rheumatoid arthritis patients do not correlate with clinical features at baseline or with disease progression. Arthritis Res Ther 15: R140.
 
25.
Too CL, Murad S, Hansson M, et al. (2017): Differences in the Spectrum of Anti-Citrullinated Protein Antibody Fine Specificities Between Malaysian and Swedish Patients With Rheumatoid Arthritis: Implications for Disease Pathogenesis. Arthritis Rheum 69: 58-69.
 
26.
Li S, Yu Y, Yue Y, et al. (2016): Autoantibodies From Single Circulating Plasmablasts React With Citrullinated Antigens and Porphyromonas gingivalis in Rheumatoid Arthritis. Arthritis Rheum 68: 614-626.
 
27.
van der Woude D, Rantapää-Dahlqvist S, Ioan-Facsinay A, et al. (2010): Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 69: 1554-1561.
 
28.
van de Stadt LA, van der Horst AR, de Koning MH, et al. (2011): The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann Rheum Dis 70: 128-133.
 
29.
Barra L, Scinocca M, Saunders S, et al. (2013): Anti-citrullinated protein antibodies in unaffected first-degree relatives of rheumatoid arthritis patients. Arthritis Rheum 65: 1439-1447.
 
30.
Suwannalai P, van de Stadt LA, Radner H, et al. (2012): Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 64: 1323-1328.
 
31.
Ärlestig L, Mullazehi M, Kokkonen H, et al. (2012): Antibodies against cyclic citrullinated peptides of IgG, IgA and IgM isotype and rheumatoid factor of IgM and IgA isotype are increased in unaffected members of multicase rheumatoid arthritis families from northern Sweden. Ann Rheum Dis 71: 825-829.
 
32.
Scherer HU, van der Woude D, Ioan-Facsinay A, et al. (2010): Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62: 1620-1629.
 
33.
Rombouts Y, Ewing E, van de Stadt LA, et al. (2015): Anti- citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis 74: 234-241.
 
34.
Ohmi Y, Ise W, Harazono A, et al. (2016): Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat Commun 7: 11205.
 
35.
Rombouts Y, Willemze A, van Beers JJ, et al. (2016): Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann Rheum Dis 75: 578-585.
 
36.
Verpoort KN, Jol-van der Zijde CM, Papendrecht-van der Voort EA, et al. (2006): Isotype distribution of anti-cyclic citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum 54: 3799-3808.
 
37.
Makrygiannakis D, Revu S, Engström M, et al. (2012): Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res Ther 14: R20.
 
38.
Hunt L, Hensor EM, Nam J, et al. (2016): T cell subsets: an immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann Rheum Dis 75: 1884-1889.
 
39.
del Val del Amo N, Ibanez Bosch R, Fito Manteca C, et al. (2006): Anti-cyclic citrullinated peptide antibody in rheumatoid arthritis: relation with disease aggressiveness. Clin Exp Rheumatol 24: 281-286.
 
40.
Meyer O, Labarre C, Dougados M, et al. (2003): Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 62: 120-126.
 
41.
Kuhn KA, Kulik L, Tomooka B, et al. (2006): Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116: 961-973.
 
42.
Uysal H, Bockermann R, Nandakumar KS, et al. (2009): Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J Exp Med 206: 449-462.
 
43.
Sokolove J, Zhao X, Chandra PE, et al. (2011): Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fc receptor. Arthritis Rheum 63: 53-62.
 
44.
Trouw LA, Haisma EM, Levarht EW, et al. (2009): Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum 60: 1923-1931.
 
45.
Laurent L, Anquetil F, Clavel C, et al. (2015): IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis 74: 1425-1431.
 
46.
Anquetil F, Clavel C, Offer G, et al. (2015): IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies. J Immunol 194: 3664-3674.
 
47.
Lu MC, Lai NS, Yin WY, et al. (2013): Anti-citrullinated protein antibodies activated ERK1/2 and JNK mitogen-activated protein kinases via binding to surface-expressed citrullinated GRP78 on mononuclear cells. J Clin Immunol 33: 558-566.
 
48.
Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. (2013): NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5: 178ra40.
 
49.
Corsiero E, Bombardieri M, Carlotti E, et al. (2016): Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis 75: 1866-1875.
 
50.
Harre U, Georgess D, Bang Rantaää-Dahlqvist H, et al. (2012): Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122: 1791-1802.
 
51.
Krishnamurthy A, Joshua V, Haj Hensvold A, et al. (2016): Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75: 721-729.
 
52.
Wigerblad G, Bas DB, Fernades-Cerqueira C, et al. (2016): Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis 75: 730-738.
 
53.
Cantaert T, Brouard S, Thurlings RM, et al. (2009): Alterations of the synovial T cell repertoire in anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheum 60: 1944-1956.
 
54.
Lundberg K, Bengtsson C, Kharlamova N, et al. (2013): Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann Rheum Dis 72: 652-658.
 
55.
Verpoort KN, Cheung K, Ioan-Facsinay A, et al. (2007): Fine specificity of the anti-citrullinated protein antibody response is influenced by the shared epitope alleles. Arthritis Rheum 56: 3949-3952.
 
56.
Makrygiannakis D, Hermansson M, Ulfgren AK, et al. (2008): Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis 67: 1488-1492.
 
57.
Harvey GP, Fitzsimmons TR, Dhamarpatni AA, et al. (2013): Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J Periodontal Res 48: 252-261.
 
58.
Mankia K, Emery P (2015): Is localized autoimmunity the trigger for rheumatoid arthritis? Unravelling new targets for prevention. Discov Med 20: 129-135.
 
59.
Makrygiannakis D, af Klint E, Lundberg IE, et al. (2006): Citru­llination is an inflammation-dependent process. Ann Rheum Dis 65: 1219-1222.
 
60.
Hill JA, Southwood S, Sette A, et al. (2003): Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 171: 538-541.
 
61.
James EA, Moustakas AK, Bui J, et al. (2010): HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum 62: 2909-2918.
 
62.
Feitsma AL, van der Voort EI, Franken KL, et al. (2010): Identification of citrullinated vimentin peptides as T cell epitopes in HLA-DR4-positive patients with rheumatoid arthritis. Arthritis Rheum 62: 117-125.
 
63.
Law SC, Street S, Yu CH, et al. (2012): T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther 14: R118.
 
64.
Rudnicka W, Burakowski T, Warnawin E, et al. (2009): Functional TLR9 modulates bone marrow B cells from rheumatoid arthritis patients. Eur J Immunol 39: 1211-1220.
 
65.
Kuca-Warnawin E, Burakowski T, Kurowska W, et al. (2011): Elevated number of recently activated T cells in bone marrow of patients with rheumatoid arthritis: a role for interleukin 15? Ann Rheum Dis 70: 227-233.
 
66.
McQueen FM, Ostendorf B (2006): What is MRI bone oedema in rheumatoid arthritis and why does it matter? Arthritis Res Ther 8: 222.
 
67.
van der Linden MP, Boja R, Klarenbeek NB, et al. (2010): Repair of joint erosions in rheumatoid arthritis: prevalence and patient characteristics in a large inception cohort. Ann Rheum Dis 69: 727-729.
 
68.
Kleyer A, Finzel S, Rech J, et al. (2014): Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73: 854-860.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top