REVIEW PAPER
Butyrophilins: an important new element of resistance
More details
Hide details
Submission date: 2017-02-07
Acceptance date: 2017-03-13
Publication date: 2017-12-30
Cent Eur J Immunol 2017;42(4):399-403
KEYWORDS
ABSTRACT
Butyrophilins belonging to the immunoglobulin superfamily are new immune system regulators because they are present on lymphocytes, dendritic cells, monocytes, macrophages, neutrophils and eosinophils, and they exert a stimulatory and (or) inhibitory effect on them. The role of butyrophilins is associated and results from their similarity to the regulatory B7 protein family involved in the modulation of immune phenomena. Butyrophilins are glycoproteins built of two extracellular immunoglobulin domains, stabilized with disulfide bonds: constant IgC, and variable IgV and a transmembrane region. Most of these proteins contain a conserved domain encoded by a single exon – B30.2, also referred to as PRYSPRY. In humans, the family of butyrophilins includes 7 butyrophilin proteins, 5 butyrophilin-like proteins and the SKINT-like factor. Butyrophilins have been also demonstrated to play a role in various infections, e.g. tuberculosis or diseases that include sarcoidosis, systemic lupus erythematosus, rheumatoid arthritis, genetic metabolic diseases, ulcerative colitis, cancer and kidney disease.
REFERENCES (51)
1.
Kusztal M, Jezior D, Weyda W, et al. (2007): Odpowiedź układu immunologicznego na aloprzeszczep nerki. Część I. Rola antygenów zgodności tkankowej, komórek prezentujących antygen i limfocytów w rozpoznawaniu aloantygenu: dwusygnałowa aktywacja limfocytu T. Postępy Hig Med Dosw 61: 13-20.
2.
Rutkowski R, Moniuszko T (2001): Rola cząstek kostymulujących B7.1 (CD80) i B7.2 (CD86) w patomechanizmie odczynu zapalnego. Alergia Astma Immunol 6: 87-94.
3.
Arnett HA, Escobar SS, Vibey JL (2009): Regulation of costimuation in the era ofbutyrophilins. Cytokine 46: 370-375.
4.
Rhodes DA, Reith W, Trowsdale J (2016): Regulation of immunity by butyropfilins. Annu Rev Immunol 34: 151-172.
5.
Grzywnowicz M, Giannopoulos K (2012): Receptor programowanej śmierci PD-1 oraz jego ligand PD-L1 jako potencjalne cele w terapii nowotworów. Acta Heamatol Pol 43: 132-145.
6.
Kawasaki AY, Nishimura H, Ishida Y, et al. (1996): Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8: 765-772.
7.
Lebrero-Fernandez C, Bergstrom JH, Pelasseyed T, Bas-Forsberg A (2016): Murine butyrophilin-like 1 and Btnl6 form heteromeric complexes in small instestinal ephitelial cells and promote proliferation of local T lymphocytes. Front Immunol 7: 1-13.
8.
Sharpe AH, Freeman GJ (2002): The B7-CD28 superfamily. Nat Rev Immunol 2: 116-126.
9.
Arnett HA, Viney JL (2014): Immune modulation by butyrophilins. Nature Immunol 14: 559-569.
10.
Heid HW, Winter S, Bruder G, et al. (1983): Butyrophilin, an apical plasma membrane-associated glycoprotein characteristic of lactating mammary glands of diverse species. Biochim Biophys Acta 728: 228-238.
11.
Abeler-Dörner L, Swamy M, Williams G, et al. (2012): Butyrophilins: an emerging family of immune regulators. Trends Immunol 33: 34-41.
12.
Afrache H, Gouret P, Ainouche S, et al. (2012): The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response. Immunogenetics 64: 781-794.
13.
Guo Y, Wang AY (2015): Novel immune check-point regulators in tolerance maintenance. Front Immunol 6: 421.
14.
Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W (2015): Koroniny i butyrofiliny – ważne białka układu odpornościowego. Post Biol Kom 42: 227-234.
15.
Malcherek G, Mayr L, Roda-Navarro P, et al. (2007): The B7 homolog butyrophilin BTN2A1 is a novel ligand for DC-SIGN. J Immunol 179: 3804-3811.
16.
Boyden LM, Lewis JM, Barbee SD, et al. (2008): Skint1, the protype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40: 656-666.
17.
Nguyen T, Liu XK, Zhang Y, Dong C (2006): BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 176: 7354-7360.
18.
Smith IA, Knezevic BR, Amman JU, et al. (2010): BTN1A1, the mammary gland butyrophilin, and BTN2A3 are both inhibitors of T cell activation. J Immunol 184: 3514-3525.
19.
Yamazaki T, Goya I, Graf D, et al. (2010): A butyrophilin family member critically inhibits T cell Activation. J Immunol 18: 5907-5914.
20.
Ammann JA, Cooke A, Trwosdale J (2013): Butyrophilin Btn2a2 inhibits T cell receptors activation, PI3K/Akt pathway signaling, and induces Foxp3 expression I T lymphocytes.
21.
J Immunol 190: 5030-5036.
22.
Stefferl A, Schubart A, Storch M, et al. (2000): Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encepgalomyelitis. J Immunol 165: 2859-2865.
23.
Swanson RM, Gavin MA, Escobar SS, et al. (2013): Butyrophilin-like 2 modulates B7 costimulation to induce Foxp3 expression and regulatory T cell development in mature T cells. J Immunol 190: 2027-2035.
24.
Gober HJ, Kistowska M, Angman L, et al. (2003): Human.
25.
T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197: 163-168.
26.
Cubillos-Ruiz JR, Martinez D, Scarlett UK, et al. (2010): CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. Oncotarget 1: 329-338.
27.
Chapoval AI, Smithson G, Brunick L, et al. (2013): BTNL8, a butyrophilin-like molecule that costimulates the primary immune response. Mol Immunol 56: 819-828.
28.
Le Page C, Ouellet V, Quinn MC, et al. (2008): BTF4/BTN3.2 and GCS as candidate mRNA prognostic markers in epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17: 913-920.
29.
Le Page C, Marineau A, Bonza PK, et al. (2012): BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cell and a better prognosis. PLoS One 7: e38541.
30.
Adams EJ, Gu S, Luoma AM (2015): Human gamma delta T cells: evolution and ligand recognition. Cell Immunol 296: 31-40.
31.
Marischen L, Wesch D, Schroder JM, et al. (2009): Human T cells produce the protease inhibitor and antimicrobial peptide elafin. Scand J Immunol 70: 547-552.
32.
Morita CT, Jin C, Sarikonda G, Wang H (2007): Nonpeptide antigens, presentation mechanisms, and immunological memory of human V2V2 T cell: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 215: 59-76.
33.
Dieli F, Troye-Blomberg M, Ivanyi J, et al. (2001): Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by V2V2 T lymphocytes.
34.
J Infect Dis 184: 1082-1085.
35.
Dudal S, Turriere C, Bessoles S, et al. (2006): Release of LL-37 by activated human V2V2 T cell: a microbial weapon against Brucella suis. J Immunol 177: 5533-5539.
36.
Sandstrom A, Peigne CM, Leger A, et al. (2014): The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human V9V2 T cell. Immunity 40: 490-500.
37.
Wang H, Morita CT (2015): Sensor function for butyrophilin 3A1 in prenyl pyrophosphate stimulation of human V2V2 T cells. J Immunol 195: 4583-4594.
38.
Chen ZW (2013): Multifunctional immune response of HMBPP-specific Vgamma2Vdelta2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 10: 58-64.
39.
Hintz M, Reichenberg A, Altincicek B, et al. (2001): Identification of (E)-4-hydroxy- 3-methyl-but-2-enyl pyrophosphate as a major activator for human T cells in Escherichia coli. FEBS Lett 509: 317-322.
40.
Valentonyte R. Hampe J, Huse K, et al. (2005): Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 37: 357-364.
41.
Puan KJ, Jin C, Wang H, et al. (2007): Prefernatial recognition of a microbial metabolite by human V2V2 T cell. Int Immunol 19: 657-673.
42.
Harly C, Guillame Y, Nedellec S, et al. (2012): Key implication of CD 277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 120: 2269-2279.
43.
Vavassori S, Kumar A, Wan GS, et al. (2013): Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gammadelta T cells. Nat Immunol 14: 908-916.
44.
Rhodes DA, Chen HC, Price AJ (2015): Activation of human gammadelta T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J Immunol 194: 2390-2398.
45.
Simone R, Barbarat B, Rabellino A, et al. (2010): Ligation of the BT3 moleucles, members of the B7 family, enhance the proinflammatory responses of the human monocytes and monocyte-derived dendritic cells. Mol Immunol 18: 109-118.
46.
Messal N, Mamessier E, Sylvain A, et al. (2011): Differential role of CD277 as a co-regulator of the immune signal in T and NK cell. Eur J Immunol 41: 3443-3454.
47.
Moller M, Kwiatkowski R, Nebel A, et al. (2007): Allelic variation in BTNL2 and susceptibility to tuberculosis in a South African population. Microbes Infect 9: 552-558.
48.
Oguri M, Fujimaki T, Horibe H, et al. (2013): Association of a polymorphism of BTN2A1 with chronic kidney disease in community-dwelling individuals. Biomedical Reports 1: 868-872.
49.
Orozco G, Eerligh P, Sanchez E, et al. (2005): Analysis of a functional BTNL2 polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Hum Immunol 66: 1235-1241.
50.
Pathan S, Gowdy RE, Cooney R, et al. (2009): Confirmation of the novel association at the BTNL2 locus with ulcerative colitis. Tissue Antigens 74: 322-329.
51.
Price P, Santoso L, Mastaglia F, et al. (2004): Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with HLA-DR3. Tissue Antigens 64: 575-580.