REVIEW PAPER
Stem cells in regenerative medicine – from laboratory to clinical application – the eye
More details
Hide details
Submission date: 2016-10-29
Acceptance date: 2016-11-25
Publication date: 2017-08-08
Cent Eur J Immunol 2017;42(2):173-180
KEYWORDS
ABSTRACT
Stem cells are currently one of the most researched and explored subject in science. They consstitue a very promising part of regenerative medicine and have many potential clinical applications. Harnessing their ability to replicate and differentiate into many cell types can enable successful treatment of diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, iPSCs) and many different methods of deriving and cultivating them in order to obtain viable material. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise different aspects of stem cells, discussing their characteristics, sources and methods of culture. We also demonstrate the most recent clinical applications in ophthalmology based on an extensive current literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory and clinical aspects of stem cells are discussed.
REFERENCES (98)
1.
Trounson A, McDonald C (2015): Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 17: 11-22.
2.
Evans MJ, Kaufman MH (1981): Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156.
3.
Lodi D, Iannitti T, Palmieri B (2011): Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30: 9.
4.
O’Donoghue K, Fisk NM (2004): Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18: 853-875.
5.
Schwab M (2009): Encyclopedia of cancer. Springer-Verlag, Berlin, Heidelberg; 3511.
6.
Skipper M, Weiss U, Gray N (2010). Plasticity. Nature 465: 703.
7.
Schwab M (2009): Encyclopedia of cancer. Springer-Verlag, Berlin, Heidelberg; 3028-3029.
8.
Takahashi K, Yamanaka S (2006): Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
9.
Smith A (2006): A glossary for stem-cell biology. Nature 441: 1060.
10.
Wobus AM, Boheler KR (2005): Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85: 635-678.
11.
Rossant J (2011): Stem cells from the mammalian blastocyst. Stem Cells 19: 477-482.
12.
Kolios G, Moodley Y (2013): Introduction to Stem Cells and Regenerative Medicine. Respiration 85: 3-10.
13.
Zhou H, Wu S, Joo JY, et al. (2009): Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 8: 381-384.
14.
Warren L, Manos PD, Ahfeldt T, et al. (2010): Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 5: 618-630.
15.
Miyoshi N, Ishii H, Nagano H, et al. (2011): Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 3: 633-638.
16.
Abad M, Mosteiro L, Pantoja C, et al. (2013): Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502: 340-345.
17.
Nagano K, Yoshida Y, Isobe T, et al. (2008): Cell surface biomarkers of embryonic stem cells. Proteomics 8: 4025-4035.
18.
Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. (2007): Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. International Stem Cell Initiative. Nat Biotechnol 25: 803-816.
19.
Yu J, Thomson JA (2014): Induced pluripotent stem celss. In: Principles of Tissue Engineering. Lanza R, Langer R, Vacanti JP (eds.). Elsevier Inc; 581-594.
20.
Dabrowski FA, Burdzinska A, Kulesza A, et al. (2017): Mesenchymal stem cells from human amniotic membrane and umbilical cord can diminish immunological response in an in vitro allograft model. Gynecol Obstet Invest 82: 267-275.
21.
Dominici M, Le Blanc K, Mueller I, et al (2006): Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.
22.
Murray IR, West CC, Hardy WR, et al. (2014): Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci CMLS 71: 1353-1374.
23.
Karussis D, Kassis I, Kurkalli BG, Slavin S (2008): Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/ neurodegenerative diseases. J Neurol Sci 265 (1-2): 131-135.
24.
Baker DE, Harrison NJ, Maltby E, et al. (2007): Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25: 207-215.
25.
Mai Q, Yu Y, Li T, et al. (2007): Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17: 1008-1019.
26.
Revazova ES, Turovets NA, Kochetkova OD, et al. (2008): HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10: 11-24.
27.
Brevini TA, Gandolfi F (2008): Parthenotes as a source of embryonic stem cells. Cell Prolif 41 (Suppl.1): 20-30.
28.
Klimanskaya I, Chung Y, Becker S, et al. (2007): Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2: 1963-1972.
29.
Chung Y, Klimanskaya I, Becker S, et al. (2008): Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2: 113e7.
30.
O’Donoghue K, Fisk NM (2004): Fetal stem cells, Best Pract Res Clin Obstet Gynaecol 18: 853-887.
31.
Götherström C, Ringdén O, Tammik C, et al. (2004): Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 190: 239-245.
32.
Khan W, Hardingham T (2012): Mesenchymal Stem Cells, Sources of Cells and Differentiation Potential. J Stem Cells 7: 75-85.
33.
Wilson KD, Wu JC (2015): Induced pluripotent stem cells. JAMA 313: 1613-1614.
34.
Stolzing A, Jones E, McGonagle D, Scutta A (2008): Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 129: 163-173.
35.
Lohmann M, Walenda G, Wagner W, et al. (2012): Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PloS One 7: 1-11.
36.
Rojewski MT, Weber BM, Schrezenmeier H (2008): Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother 35: 168-184.
37.
Kim K, Doi A, Wen B, et al. (2010): Epigenetic memory in induced pluripotent stem cells. Nature 467: 285-290.
38.
Ma H, Morey R, O’Neil RC, et al. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511: 177.
39.
Choi HY, Lee TJ, Yang GM, et al. (2016): Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. J Control Release 235: 222-235.
40.
Boreström C, Simonsson S, Enochson L, et al. (2014): Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl Med 3: 433-447.
41.
Mormone E, D’Sousa S, Alexeeva V, et al. (2014): “Footprint-free” human induced pluripotent stem cell-derived astrocytes for in vivo cell-based therapy. Stem Cells Dev 23: 2626-2636.
42.
Thomas PB, Liu YH, Zhuang FF, et al. (2007): Identification of Notch-1 expression in the limbal basal epithelium. Mol Vis 13: 337-344.
43.
Lehrer MS, Sun TT, Lavker RM (1998): Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111: 2867-2875.
44.
Ebrahimi M, Taghi-Abadi E, Baharvand H (2009): Limbal stem cells in review. J Ophthalmic Vis Res 4: 40-58.
45.
Chen Z, de Paiva CS, Luo L, et al. (2004): Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22: 355-366.
46.
Schlotzer-Schrehardt U, Kruse FE (2005): Identification and characterization of limbal stem cells. Exp Eye Res 81: 247-264.
47.
Eichner R, Bonitz P, Sun TT (1984): Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol 98: 1388-1396.
48.
Ahmad S, Kolli S, Li DQ, et al. (2008): A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells. Stem Cells 26: 1609-1619.
49.
Kenyon KR, Tseng S (1989): Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96: 709-723.
50.
Vazirani J, Basu S, Kenia H, et al. (2014): Unilateral partial limbal stem cell deficiency: Contralateral versus ipsilateral autologous cultivated limbal epithelial transplantation. Am J Ophthalmol 157 (3): 584-590.
51.
Pellegrini G, Ranno R, Stracuzzi G, et al. (1999): The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68: 868-879.
52.
Rama P, Bonini S, Lambiase A, et al. (2001): Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72: 1478-1485.
53.
Woronkowicz M, Skopinski P (2010): Clinical applications of limbal epithelial stem cells. Centr Eur Jo Immunol 35: 179-182.
54.
Hayashi R, Ishikawa Y, Kageyama T, et al. (2012): Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PloS One 7: 1-10.
55.
Ouyang H, Xue Y, Lin Y, et al. (2014): WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature 511: 358-361.
56.
Mikhailova A, Ilmarinen T, Uusitalo H, et al. (2014): Small-molecule induction promotes corneal epithelial cell differentiation from human inducedpluripotent stem cells. Stem Cell Reports 2: 219-231.
57.
Zhao Y, Ma L (2015): Systematic review and meta-analysis on transplantation of ex vivo cultivated limbal epithelial stem cell on amniotic membrane in limbal stem cell deficiency. Cornea 34: 592-600.
58.
Liu J, Sheha H, Fu Y, et al. (2011): Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency. Am J Ophthalmol 152: 739-747.
59.
Woronkowicz M, Skopinski P (2010): Embryonic stem cells and retinal regeneration. Centr Eur J Immunol 35: 267-272.
60.
Martinez-Morales JR, Del Bene F, Nica G, et al. (2005): Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Developmental Cell 8: 565-574.
61.
Sun Y, Williams A, Waisbourd M, et al. (2015): Stem cell therapy for glaucoma: Science or snake oil? Survey of Ophthalmology 60: 93-105.
62.
Cooke JA, Meyer JS (2015): Human pluripotent stem cell-derived retinal ganglion cells: applications for the study and treatment of optic neuropathies. Curr Ophthalmol Rep 3: 200-206.
63.
Riazifar H, Jia Y, Chen J, et al. (2014): Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 3: 424-432.
64.
Maekawa Y, Onishi A, Matsushita K, et al. (2016): Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 41: 558-568.
65.
Limb GA, Salt TE, Munro PM, et al. (2002): In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43: 864-869.
66.
Bull ND, Limb GA, Martin KR (2008): Human Muller stem cell (MIOM1) transplantation in a rat model of glaucoma: survival, differentiation, and integration. Invest Ophthalmol Vis Sci 49: 3449-3456.
67.
Singhal S, Bhatia B, Jayaram H, et al. (2012): Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med 1: 188-199.
68.
Son JL, Soto I, Oglesby E, et al. (2010): Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58: 780-789.
69.
Watanabe M, Toyama Y, Nishiyama A (2002): Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69: 826-836.
70.
Wilkins A, Chandran S, Compston A (2001): A role for oligodendrocyte-derived IGF-1 in trophic support of cortical.
71.
V neurons. Glia 36: 48-57.
72.
Wilkins A, Majed H, Layfield R, et al. (2003): Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23: 4967-4974.
73.
Li Y, Sauve Y, Li D, et al. (2003): Transplanted olfactory ensheathingcells promote regeneration of cut adult rat optic nerve axons. J Neurosci 23: 7783-7788.
74.
Leaver SG, Harvey AR, Plant GW (2006): Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia 53: 467-476.
75.
Xie BB, Zhang XM, Hashimoto T, et al. (2014): Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter. PLoS One 9: e112175.
76.
Hambright D, Park KY, Brooks M, et al. (2012): Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Molecular Vision 18: 920-936.
77.
Chen M, Chen Q, Sun X, et al. (2010): Generation of retinal ganglionlike cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci 51: 5970-5978.
78.
Du Y, Roh DS, Mann MM, et al. (2012): Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci 53: 1566-1575.
79.
Du Y, Yun H, Yang E, et al. (2013): Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci 54: 1450-1459.
80.
Tay CY, Sathiyanathan P, Chu SW, et al. (2012): Identification and characterization of mesenchymal stem cells derived from the trabecular meshwork of the human eye. Stem Cells Dev 21: 1381-1390.
81.
Manuguerra-Gagne R, Boulos PR, Ammar A, et al. (2013): Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 31: 1136-1148.
82.
Abu-Hassan DW, Li X, Ryan EI, et al. (2015): Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33: 751-761.
83.
Ding QJ, Zhu W, Cook AC, et al. (2014): Induction of trabecular meshwork cells from induced pluripotent stem cells. Invest Ophthalmol Vis Sci 55: 7065-7072.
84.
Takeuchi K, Kachi S, Iwata E, et al. (2012): Visual function 5 years or more after macular translocation surgery for myopic choroidal neovascularisation and age-related macular degeneration. Eye (Lond) 26: 51-60.
85.
Chen FK, Patel PJ, Uppal GS, et al. (2010): Long-term outcomes following full macular translocation surgery in neovascular age-related macular degeneration. Br J Ophthalmol 94: 1337-1743.
86.
Falkner-Radler CI, Krebs I, Glittenberg C, et al. (2011): Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomized clinical study. Br J Ophthalmol 95: 370-375.
87.
MacLaren RE, Uppal GS, Balaggan KS, et al. (2007): Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology 114: 561–570.
88.
Binder S, Krebs I, Hilgers RD, et al. (2004): Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45: 4151-4160.
89.
Kawasaki H, Suemori H, Mizuseki K, et al. (2002): Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 99: 1580-1585.
90.
Martin MJ, Muotri A, Gage F, Varki A (2005): Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11: 228-232.
91.
Sakamoto N, Tsuji K, Muul LM, et al. (2007): Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood 110: 501-508.
92.
Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, et al. (2011): Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis 17: 558-575.
93.
Zhang YS, Lu ZY, Yu Y, et al. (2012): Derivation, culture and retinal pigment epithelial differentiation of human embryonic stem cells using human fibroblast feeder cells. J Assist Reprod Genet 29: 735-744.
94.
Meyer JS, Shearer RL, Capowski EE, et al. (2009): Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106: 16698-16703.
95.
Park UC, Cho MS, Park JH, et al. (2011): Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model. Clin Exp Reprod Med 38: 216-221.
96.
Lu B, Malcuit C, Wang S, et al. (2009): Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27: 2126-2135.
97.
Schwartz SD, Regillo CD, Lam BL, et al. (2015): Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase studies. Lancet 9967: 509-516.
98.
Hayashi R, Ishikawa Y, Sasamoto Y, et al. (2016): Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531: 376-380.