REVIEW PAPER
A brief review of clinical trials involving manipulation of invariant NKT cells as a promising approach in future cancer therapies
 
More details
Hide details
 
Submission date: 2016-06-01
 
 
Final revision date: 2016-12-20
 
 
Acceptance date: 2017-02-03
 
 
Publication date: 2017-08-08
 
 
Cent Eur J Immunol 2017;42(2):181-195
 
KEYWORDS
ABSTRACT
In the recent years researchers have put a lot of emphasis on the possible immunotherapeutic strategies able to target tumors. Many studies have proven that the key role in recognition and eradication of cancer cells, both for mice and humans, is being conducted by the invariant natural killer T-cells (NKT). This small subpopulation of lymphocytes can kill other cells, either directly or indirectly, through the natural killer cells’ (NK) activation. They can also swiftly release cytokines, causing the involvement of elements of the innate and acquired immune system. With the discovery of α-galactosylceramide (α-GalCer) – the first known agonist for iNKT cells – and its later subsequent analogs, it became possible to effectively stimulate iNKT cells, hence to keep control over the tumor progression. This article refers to the current knowledge concerning iNKT cells and the most important aspects of their antitumor activity. It also highlights the clinical trials that aim at increasing the amount of iNKT cells in general and in the microenvironment of the tumor. For sure, the iNKT-based immunotherapeutic approach holds a great potential and is highly probable to become a part of the cancer immunotherapy in the future.
REFERENCES (123)
1.
Berzins SP, Cochrane AD, Pelliccic DG, et al. (2005): Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35: 1399-1407.
 
2.
Lee PT, Putnam A, Benlagha K, et al. (2002): Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110: 793-800.
 
3.
Berzins SP, Smyth MJ, Baxter AG (2011): Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol 11: 131-142.
 
4.
Slauenwhite D, Johnston B (2015): Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 6: 255.
 
5.
Ito H, Seishima M (2010): Regulation of the induction and function of cytotoxic T lymphocytes by natural killer T cell. J Biomed Biotechnol 2010: 1-8.
 
6.
Lee PT, Benlagha K, Teyton L, Bendelac A (2002): Distinct functional lineages of human V24 natural killer T cells. J Exp Med 95: 637-641.
 
7.
Godfrey DI, Stankovic S, Baxter AG (2010): Raising the NKT cell family. Nat Immunol 11: 197-206.
 
8.
Terabe M, Berzofsky JA (2008): The role of NKT cells in tumor immunity. Adv Cancer Res 101: 277-348.
 
9.
Bendelac A, Rivera MN, Park S, Roark JH (1997): Mouse CD1- specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15: 535-562.
 
10.
Bendelac A, Savage PB, Teyton L (2007): The biology of NKT cells. Annu Rev Immunol 25: 297-336.
 
11.
Van Kaer L (2007): NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol 19: 354-364.
 
12.
Van den Heuvel MJ, Garg N, Van Kaer L, Haeryfar SM (2011): NKT cell costimulation: experimental progress and therapeutic promise. Trends Mol Med 17: 65-77.
 
13.
McNab FW, Pellicci DG, Field K, et al. (2007): Peripheral NK1.1 NKT cells are mature and functionally distinct from their thymic counterparts. J Immunol 179: 6630-6637.
 
14.
Assarsson E, Kambayashi T, Sandberg JK, et al. (2000): CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 165: 3673-3679.
 
15.
Exley M, Garcia J, Balk SP, Porcelli S (1997): Requirements for CD1d recognition by human invariant V24+ CD4CD8 T cells. J Exp Med 186: 109-120.
 
16.
Kinjo Y, Tupin E, Wu D, et al. (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7: 978-986.
 
17.
Neparidze N, Dhodapkar MV (2009): Harnessing CD1d- restricted T cells towards anti-tumor immunity in humans. Ann N Y Acad Sci 1174: 61-67.
 
18.
Roark JH, Park SH, Jayawardena J, et al. (1998): CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. J Immunol 160: 3121-3127.
 
19.
Matsuda JL, Naidenko OV, Laurent G, et al. (2000): Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192: 741-754.
 
20.
Porcelli S, Yockey CE, Brenner MB, Balk SP (1993): Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178: 1-16.
 
21.
Lantz O, Bendelac A (1994): An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J Exp Med 180: 1097-1006.
 
22.
Fujii S (2008): Exploiting dendritic cells and natural killer T cells in immunotherapy against malignancies. Trends Immunol 29: 242-249.
 
23.
Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002): Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195: 625-636.
 
24.
MacDonald HR (1995): NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 182: 633-638.
 
25.
Crowe NY, Coquet JM, Berzins SP, et al. (2005): Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202: 1279-1288.
 
26.
Kronenberg M (2005): Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23: 877-900.
 
27.
Kim PJ, Pai SY, Brigl M, et al. (2006): GATA-3 regulates the development and function of invariant NKT cells. J Immunol 177: 6650-6659.
 
28.
Lee YJ, Holzapfel KL, Zhu J, et al. (2013): Steady state production of IL-4 modulates immunity in different strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14: 10.1038/ni.2731.
 
29.
Michel ML, Keller AC, Paget C. et al. (2007): Identifcation of an IL-17-producing NK1.1- iNKT cell population involved in airway neutrophilia. J Exp Med 204: 995-1001.
 
30.
Watarai H, Sekine-Kondo E, Shigeura T et al (2012): Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines. PLoS Biology 10: e1001255.
 
31.
Sag D, Krause P, Hedrick CC et al (2014): IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124: 3725-3740.
 
32.
Terabe M, Berzofsky JA (2007): NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28: 491-496.
 
33.
Cardell S, Tangri S, Chan S, et al. (1995): CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182: 993-1004.
 
34.
Macho-Fernandez E, Brigl M (2015): The extended Family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions. Front Immunol 6: 362.
 
35.
Farra AR, Wub W, Choia B, et al. (2014): CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells. PNAS 111: 12841-12846.
 
36.
Peralbo E, Alonso C, Solana R (2007): Invariant NKT and NKT-like lymphocytes: two different T cell subsets that are differentially affected by ageing. Exp Gerontol 42: 703-708.
 
37.
Zdrazilova­Dubska L, Valik D, Budinska E, et al. (2012): NKT-like Cells are Expanded in Solid Tumour Patients. Klin Onkol 25 Suppl 2: 2s21-2s25.
 
38.
Ortaldo JR, Winkler-Pickett RT, Yagita H, et al. (1991): Comparative studies of CD3- and CD3+ CD56+ cells: examination of morphology, functions, T cell receptor rearrangement, and pore-forming protein expression. Cell Immunol 136: 486-495.
 
39.
Hoyle C, Bangs CD, Chang P, et al. (1998): Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood 92: 3318-3327.
 
40.
Pievani A, Borleri G, Pende D, et al. (2011): Dual-functional capability of CD3+CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood 118: 3301-3310.
 
41.
Guilmot A, Carlier Y, Truyens C (2014): Differential IFN- production by adult and neonatal blood CD56+ natural killer (NK) and NK-like-T cells in response to Trypanosoma cruzi and IL-15. Parasite Immunology 36: 43-52.
 
42.
Linn YC, Lau SK, Liu BH, et al. (2009): Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 126: 423-435.
 
43.
Jadidi-Niaragh F, Jeddi-Tehrani M, Ansaripour B, et al. (2012): Reduced frequency of NKT-like cells in patients with progressive chronic lymphocytic leukemia. Med Oncol 29: 3561-3569.
 
44.
Linn YC, Hui KM (2010): Cytokine-Induced NK-Like T Cells: From Bench to Bedside. J Biomed Biotechnol 2010: 435745.
 
45.
Renukaradhya GI, Sriram V, Du W, et al. (2006): Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer 118: 3045-3053.
 
46.
Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC (2003): Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17: 1068-1077.
 
47.
Spada FM, Borriello F, Sugita M, et al. (2000): Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol 30: 3468-3477.
 
48.
Canchis PW, Bhan AK, Landau SB, et al. (1993): Tissue distribution of the non-polymorphic major histocompatibility complex class I-molecule CD1d. Immunology 80: 561-565.
 
49.
Exley M, Garcia J, Wilson SB, et al. (2000): CD1d structure and regulation on human thymocytes peripheral blood T cells, B cells and monocytes. Immunology 100: 37-47.
 
50.
Racke FK, Clare-Salzer M, Wilson SB (2002): Control of myeloid dendritic cell differentiation and function by CD1d-restricted (NK) T cells. Front Biosci 7: d978-d985.
 
51.
Metelitsa LS (2011): Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol 140: 119-129.
 
52.
Renukaradhya GJ, Khan MA, Vieira M, et al. (2008): Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111: 5637-5645.
 
53.
Song L, Asgharzadeh S, Salo J, et al. (2009): V24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119: 1524-1536.
 
54.
Vivier E, Ugolini S, Blaise D, et al. (2012): Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12: 239-252.
 
55.
Wu DY, Segal NH, Sidobre S, et al. (2003): Cross-presentation of Disialoganglioside GD3 to Natural Killer T cells. J Exp Med 198: 173-181.
 
56.
Smyth MJ, Godfrey DI (2000): NKT cells and tumor immunity – a double-edged sword. Nat Immunol 1: 459-460.
 
57.
Smyth MJ, Thia KY, Street SE, et al. (2000): Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000: 661-668.
 
58.
Crowe NY, Smyth MJ, Godfrey DI (2002): A Critical Role for Natural Killer T Cells in Immunosurveillance of Methylcholanthrene-induced Sarcomas. J Exp Med 196: 119-127.
 
59.
Swann JB, Uldrich AP, van Dommelen S, et al. (2009): Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood 113: 6382-6385.
 
60.
Motohashi S, Nakayama T (2008): Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci 99: 638-645.
 
61.
Weinkove R, Brooks CR, Carter JM, et al. (2013): Functional invariant natural killer T-cell and CD1d axis in chronic lymphocytic leukemia: implications for immunotherapy. Haematologica 98: 376-384.
 
62.
Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008): CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20: 358-368.
 
63.
Matsuda JL, Gapin L, Baron JL, et al. (2003): Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100: 8395-8400.
 
64.
Stetson DB, Mohrs M, Reinhardt RL, et al. (2003): Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198: 1069-1076.
 
65.
Coquet JM, Kyparissoudis K, Pellicci DG, et al. (2007): IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 178: 2827-2834.
 
66.
Paget C, Ivanov S, Fontaine J, et al. (2012): Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J Biol Chem 287: 8816-8829.
 
67.
Kitamura H, Iwakabe K, Yahata T, et al. (1999): The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189: 1121-1128.
 
68.
Uemura Y, Liu TY, Narita Y, et al. (2009): Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. J Immunol 183: 201-208.
 
69.
Germanov E, Veinotte L, Cullen R, et al. (2008): Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J Immunol 181: 81-91.
 
70.
Caux C, Massacrier C, Vanbervliet B, et al. (1994): Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180: 1263-1272.
 
71.
Fujii S, Liu K, Smith C, Bonito AJ, et al. (2004): The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199: 1607-1618.
 
72.
Smyth MJ, Crowe NY, Pellicci DG, et al. (2002): Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99: 1259-1266.
 
73.
Hermans IF, Silk JD, Gileadi U, et al. (2003): NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171: 5140-5147.
 
74.
Gottschalk C, Elisabeth Mettke E, Kurts C (2015): The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8+ T Cell Generation Front Immunol 2015: 379.
 
75.
Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, et al. (2002): Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 1995: 617-624.
 
76.
Tan JQ, Xiao W, Wang L, He YL (2010): Type 1 natural killer T cells: naturally born for fighting. Acta Pharmacol Sin 31: 1123-1132.
 
77.
Haraguchi K, Takahashi T, Nakahara F, et al. (2006): CD1d expression level in tumor cells is an important determinant for anti-tumor immunity by natural killer T cells. Leuk Lymphoma 47: 2218-2223.
 
78.
Metelitsa LS, Naidenko OV, Kant A, et al. (2001): Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167: 3114-3122.
 
79.
Introna M, Mantovani A (1983): Natural killer cells in human solid tumors. Cancer Metastasis Rev 2: 337-350.
 
80.
Facchetti P, Prigione I, Ghiotto F, et al. (1996): Functional and molecular characterization of tumour-infiltrating lymphocytes and clones thereof from a major-histocompatibility-complex-negative human tumour: neuroblastoma. Cancer Immunol Immunother 42: 170-178.
 
81.
Lin EY, Li JF, Gnatovskiy L, et al. (2006): Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66: 11238-11246.
 
82.
Zheng Y, Cai Z, Wang S, et al. (2009): Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114: 3625-3628.
 
83.
Qian B, Deng Y, Im JH, et al. (2009): A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4: e6562.
 
84.
Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012): Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12: 253-268.
 
85.
Sica A, Bronte V (2007): Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117: 1155-1166.
 
86.
Almand B, Clark JI, Nikitina E, et al. (2001): Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166: 678-689.
 
87.
Serafini P, Borrello I, Bronte V (2006): Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16: 53-65.
 
88.
Ko HJ, Lee JM, Kim YJ (2009): Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182: 1818-1828.
 
89.
Lee JM, Seo JH, Kim YJ, et al. (2012): The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer 131: 741-751.
 
90.
Gebremeskel S, Clattenburg DR, Slauenwhite D, et al. (2015): Natural killer T cell activation overcomes immunosuppression to enhance clearance of postsurgical breast cancer metastasis in mice. Oncoimmunology 4: e995562.
 
91.
Manjili MH, Payne KK (2012): Cancer immunotherapy: Re-programming cells of the innate and adaptive immune systems. Oncoimmunology 1: 201-204.
 
92.
Molling JW, Langius JAE, Langendijk JA, et al. (2007): Low levels of circulating invariant natural killer t cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25: 862-868.
 
93.
Najera Chuc AE, Cervantes LA, Retiguin FP, et al. (2012): Low number of invariant NKT cells is associated with poor survival in acute myeloid leukemia. J Cancer Res Clin Oncol 138: 1427-1432.
 
94.
Tachibana T, Onodera H, Tsuruyama T, et al. (2015): Increased intratumor v24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11: 7322-7327.
 
95.
Coca S, Perez-Piqueras J, Martinez D, et al. (1997): The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79: 2320-2328.
 
96.
Burdin N, Brossay L, Koezuka Y, et al. (1998): Selective ability of mouse CD1 to present glycolipids: -galactosylceramide specifically stimulates V14+ NK T lymphocytes. J Immunol 161: 3271-3281.
 
97.
Toura I, Kawano T, Akutsu Y, et al. (1999): Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with -galactosylceramide. J Immunol 163: 2387-2391.
 
98.
Hayakawa Y, Rovero S, Forni G, Smyth MJ (2003): Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci U S A 100: 9464-9469.
 
99.
Giaccone G, Punt CJ, Ando Y, et al. (2002): A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8: 3702-3709.
 
100.
Crowe NY, Uldrich AP, Kyparissoudis K, et al. (2003): Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J Immunol 171: 4020-4027.
 
101.
Parekh VV, Lalani S, Kim S, et al. (2009): PD-1:PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated iNKT cells. J Immunol 182: 2816-2826.
 
102.
Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002): Prolonged IFN--producing NKT response induced with -galactosylceramide-loaded DCs. Nat Immunol 3: 867-874.
 
103.
Nieda M, Okai M, Tazbirkova A, et al. (2004): Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103: 383-389.
 
104.
Ishikawa A, Motohashi S, Ishikawa E, et al. (2005): A phase I study of -galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 2005; 11: 1910-1917.
 
105.
Chang DH, Osman K, Connolly J, et al. (2005): Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201: 1503-1517.
 
106.
Uchida T, Horiguchi S, Tanaka Y, et al. (2008): Phase I study of -galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57: 337-345.
 
107.
Nicol AJ, Tazbirkova A, Nieda M (2011): Comparison of clinical and immunological effects of intravenous and intradermal administration of -galactosylceramide (KRN7000)-pulsed dendritic cells. Clin Cancer Res 17: 5140-5151.
 
108.
Fujii S, Shimizu K, Steinman RM, Dhodapkar MV (2003): Detection and activation of human V24+ natural killer T cells using -galactosyl ceramide-pulsed dendritic cells. J Immunol Methods 272: 147-159.
 
109.
Ikarashi Y, Mikami R, Bendelac A, et al. (2001): Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition: critical role for B7 in CD1d-dependent NKT cell interferon gamma production. J Exp Med 194: 1179-1186.
 
110.
Richter J, Neparidze N, Zhang L, et al. (2013): Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121: 423-430.
 
111.
Haslett PA, Corral LG, Albert M, Kaplan G (1998): Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 187: 1885-1892.
 
112.
Motohashi S, Kobayashi S, Ito T, et al. (2002): Preserved IFN- production of circulating V24 NKT cells in primary lung cancer patients. Int J Cancer 102: 159-165.
 
113.
Motohashi S, Nagato K, Kunii N, et al. (2009): A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182: 2492-2501.
 
114.
Salio M, Silk JD, Jones EY, Cerundolo V (2014): Biology of CD1-and MR1-restricted T cells. Annu Rev Immunol 32: 323-366.
 
115.
Kurosaki M, Horiguchi S, Yamasaki K, et al. (2011): Migration and immunological reaction after the administration of GalCer-pulsed antigen-presenting cells into the submucosa of patients with head and neck cancer. Cancer Immunol Immunother 60: 207-215.
 
116.
Nagato K, Motohashi S, Ishibashi F, et al. (2012): Accumulation of activated invariant natural killer T cells in the tumor microenvironment after -galactosylceramide-pulsed antigen presenting cells. J Clin Immunol 32: 1071-1081.
 
117.
Motohashi S, Ishikawa A, Ishikawa E, et al. (2006): A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12: 6079-6086.
 
118.
Motohashi S, Okamoto Y, Nakayama T (2012): Clinical trials of invariant natural killer T cell-based immunotherapy for cancer. In: Terabe M, Berzofsky JA, eds. Natural killer T cells. Balancing the regulation of tumor immunity. Springer Science + Business Media, LLC; 185-198.
 
119.
Kunii N, Horiguchi S, Motohashi S, et al. (2009): Combination therapy of in vitro-expanded natural killer T cells and -galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100: 1092-1098.
 
120.
Yamasaki K, Horiguchi S, Kurosaki M, et al. (2011): Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 138: 255-265.
 
121.
Schneiders FL, Scheper RJ, Bontkes HJ, et al. (2012): Clinical Trials with a-Galactosylceramide (KRN7000) in Advanced Cancer. In: Terabe M, Berzofsky JA, eds. Natural killer T cells. Balancing the regulation of tumor immunity. Springer Science + Business Media, LLC; 172-183.
 
122.
Gao B, Radaeva S, Park O (2009): Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol 86: 513-528.
 
123.
Tsuji M (2006): Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell Mol Life Sci 63: 1889-1898.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top