SHORT COMMUNICATION
Splenocyte proliferation and anaphylaxis induced by BSA challenge in a D-galactose-induced aging mouse model
More details
Hide details
Submission date: 2015-10-22
Final revision date: 2015-11-03
Acceptance date: 2015-12-01
Publication date: 2016-10-25
Cent Eur J Immunol 2016;41(3):324-327
KEYWORDS
ABSTRACT
We previously found a cross-reactive autoantibody that bound to bovine serum albumin generated in a D-galactose-induced aging mouse model. Also, we confirmed that other reducing sugars (glucose and fructose) could induce the formation of autoantibody, and only following subcutaneous injection, not oral or intraperitoneal administration. Mice that had never been exposed to bovine serum albumin produced an anti-bovine serum albumin autoantibody following repeated subcutaneous injection of D-galactose (D-gal). In this study, we investigated the involvement of the adaptive immune system in the production of this autoantibody. In particular, we examined bovine serum albumin-induced splenocyte proliferation and bovine serum albumin-induced active cutaneous and systemic anaphylaxis in D-gal-treated mice. We find our results particularly interesting: bovine serum albumin stimulates splenocyte proliferation and induces both active cutaneous and systemic anaphylaxis in D-gal-treated mice. In summary, our results suggest that adaptive immune response participates in the autoantibody formation against bovine serum albumin in D-gal-treated mice.
REFERENCES (13)
1.
Song X, Bao M, Li D, et al. (1996): Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108: 239-251.
2.
Rojas A, Mercadal E, Fiqueroa H, et al. (2008): Advanced glycation and ROS: a link between diabetes and heart failure. Curr Vasc Pharmacol 6: 44-51.
3.
Cui X, Zuo P, Zhang Q, et al. (2006): Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-.
4.
lipoic acid. J Neurosci Res 84: 647-654.
5.
Park JH, Choi TS (2012): Polycystic ovary syndrome (PCOS)-like phenotypes in the D-galactose-induced aging mouse model. Biochem Biophys Res Commun 427: 701-704.
6.
Park JH, Choi TS (2014): Production of cross-reactive autoantibody binding to bovine serum albumin in the D-galactose-induced aging mouse model. Am J Immunol 10: 3-9.
7.
Park JH, Choi TS (2015): The production of cross-reactive autoantibodies that bind to bovine serum albumin in mice administered reducing sugars by subcutaneous injection. Cent Eur J Immunol 40: 25-29.
8.
Cui L, Sun Y, Xu H, et al. (2013): A polysaccharide from Agaricus blazei Murill as a potent Th1 immunity-stimulating adjuvant. Oncol Lett 6: 1039-1044.
9.
Li XM, Schofield BH, Huang CK, et al. (1999): A murine model of IgE-mediated cow`s milk hypersensitivity. J Allergy Clin Immunol 103: 206-214.
10.
Overbergh L, Decallonne B, Branisteanu DD, et al. (2003): Acute shock induced by antigen vaccination in NOD mice. Diabetes 52: 335-341.
11.
Strait RT, Morris SC, Yang M, et al. (2002): Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol 109: 658-668.
12.
Finkelman FD, Rothenberg ME, Brandt EB, et al. (2005): Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Immunol 115: 449-458.
13.
Khodoun MV, Strait R, Armstrong L, et al. (2011): Identification of markers that distinguish IgE- from IgG-mediated anaphylaxis. Proc Natl Acad Sci USA 108: 12413-12418.