REVIEW PAPER
Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer
More details
Hide details
Submission date: 2016-09-04
Acceptance date: 2016-09-16
Publication date: 2017-01-24
Cent Eur J Immunol 2016;41(4):404-418
KEYWORDS
ABSTRACT
Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.
REFERENCES (189)
1.
Siegel RL, Miller KD, Jemal A (2015): Cancer statistics. CA Cancer J Clin 65: 5-29.
2.
Siegel R, Ma J, Zou Z, Jemal A (2014): Cancer statistics. CA Cancer J Clin 64: 9-29.
3.
Raimondi S, Maisonneuve P, Lowenfels AB (2009): Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6: 699-708.
4.
Jemal A, Siegiel R, Xu J, Ward E (2010): Cancer statistics. CA Cancer J Clin 60: 277-300.
5.
Bosetti C, Bertuccio P, Negri E, et al. (2012): Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog 51: 3-13.
6.
Bosetti C, Bertuccio P, Malvezzi M, et al. (2013): Cancer mortality in Europe, 2005–2009, and an overview of trends since 1980. Ann Oncol 24: 2657-2671.
7.
Howlader N, Noone AM, Krapcho M, et al. (2013): SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda. Accessed at
http://seer.cancer.gov/csr/197... on 8 August 2013.
8.
Egawa S, Takeda K, Fukuyama S, et al. (2004): Clinicopathological Aspects of Small Pancreatic Cancer. Pancreas 28: 235-240.
9.
Ariyama J, Suyama M, Ogawa K, Ikarai T (1986): Screening of pancreatic neoplasms and diagnostic rate of small pancreatic neoplasns. Nihon Rinsho 44: 1729-1734.
10.
Winter JM, Cameron JL, Campbell KA, et al. (2006): 1423 pancreaticoduodenectomies for pancreatic cancer: a single institution experience. J Gastrointest Surg 10: 1199-1211.
11.
Artinyan A, Anaya DA, McKenzie S, et al. (2011): Neoadjuvant therapy is associated with improved survival in resectable pancreatic adenocarcinoma. Cancer 117: 2044-2049.
12.
Xu CP, Xue XJ, Liang N, et al. (2014): Effect of chemoradiotherapy and neoadjuvant chemoradiotherapy in resectable pancreatic cancer: a systematic review and metaanalysis. J Cancer Res Clin Oncol 140: 549-559.
13.
Conroy T, Desseigne F, Ychou M, et al. (2011): The Groupe Tumeurs Digestives of Unicancer and the PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364: 1817-1825.
14.
Von Hoff DD, Ervin T, Arena FP, et al. (2013): Increased survival in pancreatic cancer with nabpaclitaxel plus gemcitabine. N Engl J Med 369: 1691-1703.
15.
Burris HA III, Moore MJ, Andersen J, et al. (1997): Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15: 2403-2413.
16.
Moore MJ, Goldstein D, Hamm J, et al. (2007): Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25: 1960-1966.
17.
Costello E, Greenhalf W, Neoptolemos JP (2012): New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 9: 435-444.
18.
Park MJ, Kim YK, Choi SY, et al. (2014): Preoperative detection of small pancreatic carcinoma: value of adding diffusion-weighted imaging to conventional MR imaging for improving confidence level. Radiology 273: 433-443.
19.
Freeny PC, Saunders MD (2014): Moving beyond Morphology: New Insights into the Characterization and Management of Cystic Pancreatic Lesions. Radiology 272: 345-363.
20.
Jenssen C, Kahlb S (2015): Management of Incidental Pancreatic Cystic Lesions. Viszeralmedizin 31: 14-24.
21.
Andrén-Sandberg A (2011): Complications of pancreatic surgery. N Am J Med Sci 3: 531-535.
22.
Ho C-K, Kleeff J, Friess H, Büchler MW (2005): Complications of pancreatic surgery. HPB (Oxford) 7: 99-108.
23.
Perumal S, Palaniappan R, Pillai SA, et al. (2013): Predictors of malignancy in chronic calcific pancreatitis with head mass. World J Gastrointest Surg 5: 97-103.
24.
Hewitt MJ, McPhail MJ, Possamai L, et al. (2012): EUS-guided FNA for diagnosis of solid pancreatic neoplasms: a meta-analysis. Gastrointest Endosc 75: 319-331.
25.
Iglesias-Garcia J, Lindkvist B, Larino-Noia J, Dominguez-Munoz JE (2012): The role of EUS in relation to other imaging modalities in the differential diagnosis between mass forming chronic pancreatitis, autoimmune pancreatitis and ductal pancreatic adenocarcinoma. Rev Esp Enferm Dig 104: 315-321.
26.
Chang J, Schomer D, Dragovich T (2015): Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications. Biomed Res Int 2015: 1-10.
27.
Cooper CL, O’Toole SA, Kench JG (2013): Classification, morphology and molecular pathology of premalignant lesions of the pancreas. Pathology 45: 286-304.
28.
Hruban RH, Maitra A, Goggins M (2008): Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 1: 306-316.
29.
Tanno S, Nakano Y, Koizumi K, et al. (2010): Pancreatic ductal adenocarcinomas in long-term follow-up patients with branch duct intraductal papillary mucinous neoplasms. Pancreas 39: 36-40.
30.
Ohtsuka T, Tanaka M (2014): Pancreatic Ductal Adenocarcinoma Concomitant with Intraductal Papillary Mucinous Neoplasm of the Pancreas: Clinical and Molecular Aspects and an Approach to Early Diagnosis. Pancreapedia: Exocrine Pancreas Knowledge Base, Version 1.0, 2014.
31.
Klöppel G, Basturk O, Schlitter AM, et al. (2014): Intraductal neoplasms of pancreas. Semin Diagn Patho 31: 452-466.
32.
Feldmann G, Beaty R, Hruban RH, Maitra A (2007): Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 14: 224-232.
33.
Macgregor-Das AM, Iacobuzio-Donahue CA (2013): Molecular pathways in pancreatic carcinogenesis. J Surg Oncol 107: 8-14.
34.
Canto MI, Goggins M, Hruban RH, et al. (2006): Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 4: 766-781.
35.
Brune K, Abe T, Canto M, et al. (2006): Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol 30: 1067-1076.
36.
Dexler SK, Foxlwell BM (2010): The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol 42: 506-518.
37.
Fischer M, Ehlers M (2008): Toll-like receptors in autoimmunity. Ann N Y Acad Sci 143: 21-34.
38.
Takeuchi O, Akira S (2010): Pattern recognition receptors and inflammation. Cell 140: 805-820.
39.
Rakoff-Nahoum S, Medzitov R (2009): Toll-like receptors and cancer. Nat Rev Cancer 9: 57-63.
40.
Chung JY, Park YC, Ye H, Wu H (2002): All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115: 679-688.
41.
Tseng PH, Matsuzawa A, Zhang W, et al. (2010): Different modes of ubiquitination of adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11: 70-75.
42.
Park JS, Svetkauskaite D, He Q, et al. (2004): Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279: 7370-7377.
43.
Bustin M (1999): Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19: 5237-5246.
44.
Wang H, Yang H, Czura CJ, et al. (2001): HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med 164: 1768-1773.
45.
El Gazzar M (2007): HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm Res 56: 162-167.
46.
Fukata M, Chen A, Vamadevan AS, et al. (2007): Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133: 1869-1881.
47.
Goto Y, Arigami T, Kitago M, et al. (2008): Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 7: 3642-3653.
48.
He W, Liu Q, Wang L, et al. (2007): TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44: 2850-2859.
49.
Ilvesaro JM, Merrell MA, Swain TM, et al. (2007): Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67: 774-781.
50.
Kelly MG, Alvero AB, Chen R, et al. (2006): TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66: 3859-3868.
51.
Ochi A, Graffeo CS, Zambirinis CP, et al. (2012): Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans.J Clin Invest 122: 4118-4129.
52.
Tsujimoto H, Ono S, Majima T, et al. (2005):Neutrophil elastase, MIP-2, and TLR-4 Expression During Human and Experimental Sepsis. Shock 23: 39-44.
53.
Schaaf B, Luitjens K, Goldmann T, et al. (2009): Mortality in human sepsis is associated with downregulation of Toll-like receptor 2 and CD14 expression on blood monocytes. Diagn Pathol 4: 12-19.
54.
Subramanian S, Tus K, Li Q-Z, et al. (2006): A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U S A 103: 9970-9975.
55.
Roelofs MF, Wenink MH, Brentano F, et al. (2009): I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA). Ann Rheum Dis 68: 1486-1493.
56.
Devaraj S, Dasu MR, Rockwood J, et al. (2008): Increased Toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93: 578-583.
57.
Yu L, Chen S (2008): Toll-like receptors expressed in tumor cells: target for therapy. Cancer Immunol Immunother 57: 1271-1278.
58.
Zhang JJ, Wu HS, Wang L, et al. (2010): Expression and significance of TLR4 and HIF-1 in pancreatic ductal adenocarcinoma. World J Gastroenterol 16: 2881-2888.
59.
Morse DL, Balagurunathan Y, Hostetter G, et al. (2010): Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray. Biochem Pharmacol 80: 748-754.
60.
Rosenberg JS, Singh S, Raul S, et al. (2011): Pancreatic cancer screening by TLR phenotyping. Cancer Res 71 Suppl 8: Abstract 894.
61.
Huang B, Zhao J, Li H, et al. (2005): Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65: 5009-5014.
62.
Sato Y, Goto Y, Narita N, Hoon DS (2009): Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron 2: 205-214.
63.
Zhou M, McFarland-Mancini MM, Funk HM, et al. (2009): Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother 58: 1375-1385.
64.
Wang EL, Qian ZR, Nakasono M, et al. (2010): High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 102: 908-915.
65.
Basith S, Manavalan B, Yoo TH, et al. (2012): Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 35: 1297-1316.
66.
Ochi A, Nguyen AH, Bedrosian AS, et al. (2012): MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209: 1671-1687.
67.
Del Pozo JL (2010): Primers on molecular pathways: lipopolysaccharide signaling-potential role in pancreatitis and pancreatic cancer. Pancreatology 10: 114-118.
68.
Bloomston M, Zervos EE, Rosemurgy AS 2nd (2002): Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol 9: 668-674.
69.
Liu CY, Xu JY, Shi XY, et al. (2013): M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest 93: 844-854.
70.
Zambirinis CP, Ochi A, Barilla R, et al. (2013): Induction of TRIF-or MYD88-dependent pathways perturbs cell cycle regulation in pancreatic cancer. Cell Cycle 12: 1153-1154.
71.
De Monte L, Reni M, Tassi E, et al. (2011): Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208: 469-478.
72.
Ikebe M, Kitaura Y, Nakamura M, et al. (2009): Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway.
73.
J Surg Oncol 100: 725-731.
74.
Vonlaufen A, Xu Z, Daniel B, et al. (2007): Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 133: 1293-1303.
75.
Wang JH, Manning BJ, Wu QD, et al. (2003): Endotoxin/lipopolysaccharide activates NF-B and enhances tumor cell adhesion and invasion through a -1 integrin-dependent mechanism. J Immunol 170: 795-804.
76.
Onier N, Hilpert S, Arnould L, et al. (1999): Cure of colon cancer metastasis in rats with the new lipid A OM 174. Apoptosis of tumor cells and immunization of rats. Clin Exp Metastasis 17: 299-306.
77.
Reisser D, Pance A, Jeannin JF (2002): Mechanisms of antitumoral effect of lipid A. Bioessays 24: 284-289.
78.
Isambert N, Fumoleau P, Paul C, et al. (2013): Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors. BMC Cancer 13: 172-182.
79.
Fan P, Zhang JJ, Wang B, et al. (2012): Hypoxia-inducible factor-1 upregulates the expression of Toll-like receptor 4 in pancreatic cancer cells under hypoxic conditions. Pancreatology 12: 170-178.
80.
Chen K, Huang J, Gong W, et al. (2007): Toll-like receptors in inflammation, infection and cancer. Int Immunopharmacol 7: 1271-1285.
81.
Cheng N, He R, Tian J, et al. (2008): Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol 181: 22-26.
82.
Kanzler H, Barrat FJ, Hessel EM, Coffman RL (2007): Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13: 552-559.
83.
Zuany-Amorim C, Hastewell J, Walker C (2002): Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1: 797-807.
84.
Schneider C, Schmidt T, Ziske C, et al. (2004): Tumor suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 53: 355-361.
85.
Schmidt J, Welsch T, Jäger D, et al. (2007): Intratumoral injection of the toll-like receptor-2/6 agonist ‘macrophage-activating lipopeptide-2’ in patients with pancreatic carcinoma: a phase.
86.
I/II trial. Br J Cancer 97: 598-604.
87.
Rosendahl AH, Sun C, Wu D, Andersson R (2012): Polysaccharide-K (PSK) increases p21(WAF/Cip1) and promotes apoptosis in pancreatic cancer cells. Pancreatology 12: 467-474.
88.
Shime H, Matsumoto M, Seya T: The role of innate immune signaling in regulation of tumor-associated myeloid cells. In: Inflammation and Immunity in Cancer. Seya T (eds.). Japan: Springer 2015; 25-48.
89.
Park HD, Lee Y, Oh YK, et al. (2011): Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation. Oncogene 30: 201-211.
90.
Kim SA, Lee Y, Jung DE, et al. (2009): Pancreatic adenocarcinoma up-regulated factor (PAUF), a novel up-regulated secretory protein in pancreatic ductal adenocarcinoma. Cancer Sci 100: 828-836.
91.
Kang TH, KimYS, Kim S, et al. (2015): Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget 6: 27751-27762.
92.
Kim SK, Song SY,Kim S, et al. (2014): Association of pancreatic adenocarcinoma up-regulated factor expression in ovarian mucinous adenocarcinoma with poor prognosis. Int J Clin Exp Pathol 7: 5103-5110.
93.
Huynh AS, Chung WJ, Cho HI, et al. (2012): Novel Toll-like Receptor 2 Ligands for Targeted Pancreatic Cancer Imaging and Immunotherapy. J Med Chem 55: 9751-9762.
94.
Zom GG, Khan S, Britten CM, et al. (2014): Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2: 756-764.
95.
Hemmi H, Takeuchi O, Kawai T, et al. (2000): Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745.
96.
Polvani S, Tarocchi M, Tempesti S, et al. (2016): Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 22: 2441-2459.
97.
Adams S (2009): Toll-like receptor agonists in cancer therapy. Immunotherapy 1: 949-964.
98.
Shojaei H, Oberg HH, Juricke M, et al. (2009): Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 69: 8710-8717.
99.
Gonnermann D, Oberg HH, Kellner C, et al. (2015): Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against T cell cytotoxicity. Oncoimmunology 4: e988460.
100.
Grimmig T, Matthes N, Hoeland K, et al. (2015): TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int J Oncol 47: 857-866.
101.
Vaz J, Akbarshahi H, Andersson R (2013): Controversial role of toll-like receptors in acute pancreatitis. World J Gastroenterol 19: 616-630.
102.
Zeng YJ, Song JM, Li Y, et al. (2008): Toll-like receptor 9 is expressed in rat pancreas and is involved in cerulein-induced pancreatitis. Pancreas 36: 212-214.
103.
Wu HQ, Wang B, Zhu SK, et al. (2011): Effects of CPG ODN on biological behavior of PANC-1 and expression of TLR9 in pancreatic cancer. World J Gastroenterol 17: 996-1003.
104.
Li Y, Zhou ZG, Xia QJ, et al. (2005): Toll-like receptor 4 detected in exocrine pancreas and the change of expression in cerulein-induced pancreatitis. Pancreas 30: 375-381.
105.
Kemp TJ, Ludwig AT, Earel JK, et al. (2005): Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in release of functional TRAIL/Apo-2L. Blood 106: 3474-3482.
106.
Manegold C, Gravenor D, Woytowitz D, et al. (2008): Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676,in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 26: 3979-3986.
107.
Mauri D, Kamposioras K, Tsali L, et al. (2010): Overall survival benefit for weekly vs.three-weekly taxanes regimens in advanced brest cancer: A meta-analysis. Cancer Treat Rev 36: 69-74.
108.
Garay RP, Viens P, Bauer J, et al. (2007): Cancer relapse underchemotherapy: Why TLR2/4 receptor agonists can help. Eur J Pharmacol 563: 1-17.
109.
Jacobs C, Duewell P, Heckelsmiller K, et al. (2011): An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer 128: 897-907.
110.
Bauer C, Sterzik A, Bauernfeind F, et al. (2014): Concomitant gemcitabine therapy negatively affects DC vaccine-induced CD8(+) T-cell and B-cell responses but improves clinical efficacy in a murine pancreatic carcinoma model. Cancer Immunol Immunother 63: 321-333.
111.
Friess H, Wang L, Zhu Z, et al. (1999): Growth factor receptors are differentially expressed in cancers of the papilla of Vater and pancreas. Ann Surg 230: 767-774.
112.
Rosa R, Melisi D, Damiano V, et al. (2011): Toll-like receptor 9 agonist IMO cooperates with cetuximab in K-ras mutant colorectal and pancreatic cancers. Clin Cancer Res 17: 6531-6541.
113.
Pratesi G, Petrangolini G, Tortoreto M, et al. (2005): Therapeutic synergism of gemcitabine and CpGO ligodeoxynucleotides in an orthotopic human pancreatic carcinoma xenograft. Cancer Res 65: 6388-6393.
114.
Furrie E, Macfarlane S, Thomson G, Macfarlane GT (2005): Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 115: 565-574.
115.
Nishimura M, Naito S (2005): Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28: 886-892.
116.
Yoneda K, Sugimoto K, Shiraki K, et al. (2008): Dual topology of functional Toll-like receptor 3 expression in human hepatocellular carcinoma: differential signaling mechanisms of TLR3-induced NF-kappaB activation and apoptosis. Int J Oncol 33: 929-936.
117.
Szczepanski M, Stelmachowska M, Stryczyński L, et al. (2007): Assessment of expression of toll-like receptors 2, 3 and 4 in laryngeal carcinoma. Eur Arch Otorhinolaryngol 264: 525-530.
118.
Le UM, Yanasarn N, Lohr CV, et al. (2008): Tumor chemo-immunotherapy using gemcitabine and a synthetic dsRNA. Cancer Biol Ther 7: 440-447.
119.
Salaun B, Lebecque S, Matikainen S, et al. (2007): Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13: 4565-4574.
120.
Salaun B, Coste I, Rissoan MC, et al. (2006): TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176: 4894-4901.
121.
Laplanche A, Alzieu L, Delozier T, et al. (2000): Polyadenylic-polyuridylic acid plus locoregional radiotherapy versus chemotherapy with CMF in operable breast cancer: a 14 year follow-up analysis of a randomized trial of the Federation Nationale des Centres de Lutte contre le Cancer (FNCLCC). Breast Cancer Res Treat 64: 189-191.
122.
Schwartz AL, Malgor R, Dickerson E, et al. (2009): Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 15: 4114-4122.
123.
Taura M, Fukuda R, Suico MA, et al. (2010): TLR3 induction by anticancer drugs potentiates poly I:C-induced tumor cell apoptosis. Cancer Sci 101: 1610-1617.
124.
Tissari J, Sirén J, Meri S, et al. (2005): IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 Expression.
125.
J Immunol 174: 4289-4294.
126.
Kato K, Lillehoj EP, Kim KC (2014): MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN- (TRIF) recruitment to Toll-like receptor 3.Am J Respir Cell Mol Biol 51: 446-454.
127.
Lan MS, Batra SK, Qi WN, et al. (1990): Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 265: 15294-15299.
128.
Lau SK, Weiss LM, Chu PG (2004): Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 122: 61-69.
129.
Yamada N, Nishida Y, Tsutsumida H, et al. (2008): MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res 68: 2708-2716.
130.
Luttges J, Feyerabend B, Buchelt T, et al. (2002): The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am J Surg Pathol 26: 466-471.
131.
Seshacharyulu P, Ponnusamy MP, Rachagani S, et al. (2015): Targeting EGF-receptor(s) – STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget 6: 5164-5181.
132.
Burdelya LG, Krivokrysenko VI, Tallant TC, et al. (2008): An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320: 226-230.
133.
Soto LJ3rd, Sorenson BS, Kim AS, et al. (2003): Attenuated Salmonella typhimurium prevents the establishment of unresectable hepatic metastases and improves survival in a murine model. J Pediatr Surg 38: 1075-1079.
134.
Yam C, Zhao M, Hayashi K, et al. (2010): Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 164: 248-255.
135.
Burdelya LG, Bracketta CM, Kojouharova B, et al. (2013): Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Science U S A 110: E1857-E1866.
136.
Cai Z, Sanchez A, Shi Z, et al. (2011):
http://cancerres.aacrjournals.... of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth. Cancer Res 71: 2466-2475.
137.
Rhee SH, Im E, Pothoulakis C (2008): Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology135: 518-528.
138.
Schmausser B, Andrulis M, Endrich S, et al. (2005): Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295: 179-185.
139.
Zeng H-M, Pan K-F, Zhang Y, et al. (2011): Genetic Variants of Toll-Like Receptor 2 and 5, Helicobacter Pylori Infection, and Risk of Gastric Cancer and Its Precursors in a Chinese Population. Cancer Epidemiol Biomarkers Prev 20: 2594-2602.
140.
Chung HW, Lim JB, Jang S, et al. (2012): Serum high mobility group box-1 is a powerful diagnostic and prognostic biomarker for Pancreatic Ductal Adenocarcinoma. Cancer Sci 103: 1714-1721.
141.
Kang R, Tang D, Schapiro NE, et al. (2010): The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17: 666-676.
142.
Ellerman JE, Brown CK, de Vera M, et al. (2007): Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13: 2836-2848.
143.
Chung HW, Lee SG, Kim H, et al. (2009): Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 7: 38-49.
144.
Liang XY, Li QQ, Zhang ZL, et al. (2014): High Mobility Group Box 1 (HMGB1) is Associated with Progression and Poor Prognosis in Pancreatic Cancer. J Gastroint Dig Syst 4: 190.
145.
Lotze MT, Tracey KJ (2005): High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331-342.
146.
Kang R, Tang D, Schapiro NE, et al. (2014): The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33: 567-577.
147.
Wang W, Abbruzzese JL, Evans DB, et al. (1999): The nuclear factor-nB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5: 119-127.
148.
Starczynowski DT, Lockwood WW, Deléhouzée S, et al. (2011): TRAF6 is an amplified Oncogene bridging the RAS and NF-B pathways in human lung cancer. J Clin Invest 121: 4095-4105.
149.
Sun H, Li XB, Meng Y, et al. (2013): TRAF6 upregulates expression of HIF-1alpha and promotes tumor angiogenesis. Cancer Res 73: 4950-4959.
150.
Erkan M, Reiser-Erkan C, Michalski CW, et al. (2009): Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11: 497-508.
151.
Rong Y, Wang D, Wu W, et al. (2014): TRAF6 is over-expressed in pancreatic cancer and promotes the tumorigenicity of pancreatic cancer cells. Med Oncol 31: 260.
152.
Chiu HW, Lin SW, Lin LC, et al. (2015): Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365: 229-239.
153.
Słotwiński R, Dąbrowska A, Lech G, et al. (2014): Gene expression disorders of innate antibacterial signaling pathway in pancreatic cancer patients: implications for leukocyte dysfunction and tumor progression. Cent Eur J Immunol 39: 498-507.
154.
Kędziora S, Słotwiński R, Dąbrowska A, et al. (2012): Glutamine abolishes the TLR4 gene overexpression in pancreatic cancer patients: a preliminary study. Cent Eur J Immunol 37: 350-354.
155.
Kessel A, Toubi E, Pavlotzky E, et al. (2008): Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxemia in a rat. Clin Exp Immunol 151: 341-347.
156.
Lee JY, Plakidas A, Lee WH, et al. (2003): Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res 44: 479-486.
157.
Hsu RY, Chan CH, Spicer JD, et al. (2011): LPS-Induced TLR4 Signaling in Human Colorectal Cancer Cells Increases 1 Integrin-Mediated Cell Adhesion and Liver Metastasis. Cancer Res 71: 1989-1998.
158.
Fukui M, Kang KS, Okada K, Zhu BT (2013): EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ROS accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem 114: 192-203.
159.
Shirota T, Haji S, Yamasaki M, et al. (2005): Apoptosis in human pancreatic cancer cells induced by eicosapentaenoic acid. Nutrition 21: 1010-1017.
160.
Dai J, Shen J, Pan W, et al. (2013): Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis 12: 71.
161.
D’Eliseo D, Velotti F (2016): Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med 5: pii: E15.
162.
Arshad A, Isherwood J, Mann C, et al. (2015): Intravenous -3 fatty acids plus gemcitabine. Potential to improve response and quality of life in advanced pancreatic cancer. JPEN J Parenter Enteral Nutrpii: 0148607115595221.
163.
Liu HQ, Qiu Y, Mu Y, et al. (2013): A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rat. Nutr Res 33: 849-858.
164.
Wendel M, Heller AR (2009): Anticancer actions of omega-3 fatty acids – current state and future perspectives. Anticancer Agents Med Chem 9: 457-470.
165.
Yang P, Jiang Y, Fischer SM (2014): Prostaglandin E3 metabolism and cancer. Cancer Lett 348: 1-11.
166.
Wang W, Zhu J, Lyu F, et al. (2014): -3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat 113-115: 13-20.
167.
Mai CW, Kang YB, Pichika MR (2013): Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther 6: 1573-1587.
168.
Carneiro LA, Travassos LH, Philpott DJ (2004): Innate immune recognition of microbes through Nod1 and Nod2: implications for disease. Microbes Infect 6: 609-616.
169.
Santoni M, Andrikou K, Sotte V, et al. (2015): Toll like receptors and pancreatic diseases: From a pathogenetic mechanism to a therapeutic target. Cancer Treat Rev 41: 569-576.
170.
Sońdka Z, Tretyn A, Szeliga J, Jackowski M (2006): Involvement of leucine rich repeats (LRR) domain containing proteins in molecular mechanisms of innate immunity of plants and animals. Post Biol Kom 33: 635-656.
171.
Chamaillard M, Hashimoto M, Horie Y et al. (2003): An essential role for Nod1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4: 702-707.
172.
Girardin SE, Boneca IG, Viala J, et al. (2003): Nod2 is a general sensor of peptidoglykan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869-8872.
173.
Lee JY, Hwang DH (2006): The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol Cells 21: 174-185.
174.
Jiang W, Wang X, Zeng B, et al. (2013): Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J Exp Med 210: 2465-2476.
175.
Chen GY, Shaw MH, Redondo G, Núńez G (2008): The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 68: 10060-10067.
176.
Prajapati B, Jena PK, Rajput P, et al. (2014): Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev 10: 190-200.
177.
Kurzawski G, Suchy J, Kładny J, et al. (2004): The NOD2 3020insC mutation and the risk of colorectal cancer. Cancer Res 64: 1604-1606.
178.
Kutikhin AG (2011): Role of NOD1/CARD4 and NOD2/CARD15 gene polymorphisms in cancer etiology.Hum Immunol 72: 955-968.
179.
Liu J, He C, Xu Q, et al. (2014): NOD2 Polymorphisms Associated with Cancer Risk: A Meta-Analysis. PLoS One 9: e89340.
180.
Li D, Duell EJ, Yu K, et al. (2012): Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 33: 1384-1390.
181.
Ino Y, Yamazaki-Itoh R, Shimada K, et al. (2013): Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108: 914-923.
182.
Gabitass RF, Annels NE, Stocken DD, et al. (2011): Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60: 1419-1430.
183.
Landskron G, De la Fuente M, Thuwajit P, et al. (2014): Chronic Inflammation and Cytokines in the Tumor Microenvironment. J Immunol Res 2014: 1-19.
184.
Rauser S, Langer R, Tschernitz S, et al. (2010): High number of CD45RO+ tumor infiltratinglymphocytes is an independent prognostic factorin non-metastasized (stage I-IIA) esophagealadenocarcinoma. BMC Cancer 10: 608-617.
185.
Arora A, Singh S, Bhatt AN, et al. (2015): Interplay between metabolism and oncogenic process: Role of microRNAs. Transl Oncogenomics 7: 11-27.
186.
Son J, Lyssiotis CA, Ying H, et al. (2013): Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496: 101-105.
187.
Chakrabarti G, Moore ZR, Luo X, et al. (2015): Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab 3: 12.
188.
Hering J, Garrean S, Dekoj TR, et al. (2007): Inhibition of Proliferation by Omega-3 Fatty Acids in Chemoresistant Pancreatic Cancer Cells. Ann Surg Oncol 14: 3620-3628.
189.
Sun L, Chua CY, Tian W, et al. (2015): MicroRNA signaling pathway network in pancreatic ductal adenocarcinoma. J Genet Genomics 42: 563-577.