REVIEW PAPER
Endogenous antimicrobial factors in the treatment of infectious diseases
 
More details
Hide details
 
Submission date: 2016-05-23
 
 
Final revision date: 2016-06-27
 
 
Acceptance date: 2016-06-28
 
 
Publication date: 2017-01-24
 
 
Cent Eur J Immunol 2016;41(4):419-425
 
KEYWORDS
ABSTRACT
Nowadays, a number of antibiotic-resistant bacteria strains is increasing. It is a serious clinical problem and poses a threat to the effectiveness of conventional antibiotic therapy. Thus, scientists are constantly seeking new alternatives for treatment of infectious diseases. There are some natural endogenous factors, which possess antimicrobial activities against a large number of microorganisms, including both Gram-positive and Gram-negative bacteria, viruses and fungi. These factors are present in all eukaryotic organisms and constitute an essential element of their immune system. A large number of in vitro and in vivo models have been used to show the activity of antimicrobial factors, and only few studies have been conducted on people. Results indicate that administration of these molecules is therapeutically beneficial. This review summarizes knowledge of selected endogenous antimicrobial agents, such as cathelicidins, defensins, histatins, lysozyme and lactoferrin. We also discuss potential uses of these factors in the treatment of infectious diseases.
REFERENCES (58)
1.
Kościuczuk EM, Lisowski P, Jarczak J, et al. (2012): Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39: 10957-10970.
 
2.
Kahlenberg JM, Kaplan MJ (2013): Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191: 4895-4901.
 
3.
Davidopoulou S, Diza E, Sakellari D, et al. (2013): Salivary concentration of free LL-37 in edentulism, chronic periodontitis and healthy periodontium. Arch Oral Biol 58: 930-934.
 
4.
Jeng L, Yamshchikov AV, Judd SE, et al. (2009): Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J Transl Med 7: 28.
 
5.
Xiao W, Hsu YP, Ishizaka A, et al. (2005): Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest 128: 2316-2336.
 
6.
Schaller-Bals S, Schulze A, Bals R (2002): Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165: 992-995.
 
7.
Yamshchikov AV, Kurbatova EV, Kumari M, et al. (2010): Vitamin D status and antimicrobial peptide cathelicidin (LL-37) concentrations in patients with active pulmonary tuberculosis. Am J Clin Nutr 92: 603-611.
 
8.
Hizal M, Bruni C, Romano E, et al. (2015): Decrease of LL-37 in systemic sclerosis: a new marker for interstitial lung disease? Clin Rheumatol 34: 795-798.
 
9.
Jarczak J, Kościuczuk EM, Lisowski P, et al. (2013): Defensins: natural component of human innate immunity. Hum Immunol 74: 1069-1079.
 
10.
Conibear AC, Craik DJ (2014): The chemistry and biology of theta defensins. Angew Chem Int Ed Engl 53: 10612-10623.
 
11.
Zhang T, Liao JY (2012): Serum levels of human -defensins 1 and immunoglobulins A, G and M in infants with recurrent pneumonia. Zhongguo Dang Dai Er Ke Za Zhi 14: 431-433.
 
12.
Kaltsa G, Bamias G, Siakavellas SI, et al. (2016): Systemic levels of human -defensin 1 are elevated in patients with cirrhosis. Ann Gastroenterol 29: 63-70.
 
13.
Gedik AH, Cakir E, Gokdemir Y, et al. (2015): Cathelicidin (LL-37) and human 2-defensin levels of children with post-infectious bronchiolitis obliterans. Clin Respir J doi: 10.1111/crj.12331.
 
14.
Baines KJ, Wright TK, Simpson JL, et al. (2015): Airway -defensin-1 protein is elevated in COPD and severe asthma. Mediators Inflamm 407271.
 
15.
Mizukawa N, Sugiyama K, Ueno T, et al. (1999): Defensin-1, an antimicrobial peptide present in the saliva of patients with oral diseases. Oral Dis 5: 139-142.
 
16.
Tiriveedhi V, Banan B, Deepti S, et al. (2014): Role of defensins in the pathogenesis of chronic lung allograft rejection. Hum Immunol 75: 370-377.
 
17.
Tikhonov I, Rebenok A, Chyzh A (1997): A study of interleukin-8 and defensins in urine and plasma of patients with pyelonephritis and glomerulonephritis. Nephrol Dial Transplant 12: 2557-2561.
 
18.
Kavanagh K, Dowd S (2004): Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56: 285-289.
 
19.
Gajda E, Bugla-Płoskońska G (2014): Lysozyme – occurrence in nature, biological properties and possible applications. Postepy Hig Med Dosw 68: 1501-1515.
 
20.
González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009): Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33: 301.e301-301.e308.
 
21.
Sader HS, Fedler KA, Rennie RP, Stevens S, et al. (2004): Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48: 3112-3118.
 
22.
Fritsche TR, Rhomberg PR, Sader HS, Jones RN (2008): Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob Agents Chemother 52: 1187-1189.
 
23.
Rubinchik E, Dugourd D, Algara T, et al. (2009): Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents 34: 457-461.
 
24.
Dawgul M, Maciejewska M, Jaskiewicz M, et al. (2014): Antimicorbial peptides as potential tool to fight bacterial biofilm. Acta Pol Pharm 71: 39-47.
 
25.
Gordon YJ, Romanowski EG, McDermott AM (2005): A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30: 505-515.
 
26.
Ge Y, MacDonald D, Henry MM, et al. (1999): In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis 35: 45-53.
 
27.
Lipsky BA, Holroyd KJ, Zasloff M (2008): Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47: 1537-1545.
 
28.
Kulkarni MM, Karafova A, Kamysz W, McGwire BS (2014): Design of protease-resistant pexiganan enhances antileishmanial activity. Parasitol Res 113: 1971-1976.
 
29.
Hou M, Zhang N, Yang J, et al. (2013): Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem 32: 614-623.
 
30.
Beaumont PE, McHugh B, Findlay EG, et al. (2014): Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One 9: e99029.
 
31.
Xia X, Zhang L, Wang Y (2015): The antimicrobial peptide cathelicidin-BF could be a potential therapeutic for Salmonella typhimurium infection. Microbiol Res 171: 45-51.
 
32.
Furci L, Baldan R, Bianchini V, et al. (2015): New role for human -defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect Immun 83: 986-995.
 
33.
Kaushal A, Gupta K, van Hoek ML (2016): Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora. Biochem Biophys Res Commun 470: 955-960.
 
34.
Mygind PH, Fischer RL, Schnorr KM, et al. (2005): Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437: 975-980.
 
35.
Maiti S, Patro S, Purohit S, et al. (2014): Effective control of Salmonella infections by employing combinations of recombinant antimicrobial human -defensins hBD-1 and hBD-2. Antimicrob Agents Chemother 58: 6896-6903.
 
36.
Patro S, Maiti S, Panda SK, Dey N (2015): Utilization of plant-derived recombinant human -defensins (hBD-1 and hBD-2) for averting salmonellosis. Transgenic Res 24: 353-364.
 
37.
Velusamy SK, Fine DH, Velliyagounder K (2014): Prophylactic effect of human lactoferrin against Streptococcus mutans bacteremia in lactoferrin knockout mice. Microbes Infect 16: 762-767.
 
38.
Shestakov, A Jenssen H, Nordström I, Eriksson K (2012): Lactoferricin but not lactoferrin inhibit Herpes simplex virus type 2 infection in mice. Antiviral Res 93: 340-345.
 
39.
Hwang SA, Arora R, Kruzel ML, Actor JK (2009): Lactoferrin enhances efficacy of the BCG vaccine: comparison between two inbred mice strains (C57BL/6 and BALB/c). Tuberculosis (Edinb) 89 Suppl 1: S49-S54.
 
40.
Teneback CC, Scanlon TC, Wargo MJ, et al. (2013): Bioengineered lysozyme reduces bacterial burden and inflammation in a murine model of mucoid Pseudomonas aeruginosa lung infection. Antimicrob Agents Chemother 57: 5559-5564.
 
41.
Palumbo D, Iannaccone M, Porta A, Capparelli R (2010): Experimental antibacterial therapy with puroindolines, lactoferrin and lysozyme in Listeria monocytogenes-infected mice. Microbes Infect 12: 538-545.
 
42.
Clementi EA, Wilhelm KR, Schleucher J, et al. (2013): A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae. PLoS One 8: e80649.
 
43.
Tripathy N, Ahmad R, Bang SH, et al. (2014): Tailored lysozyme-ZnO nanoparticle conjugates as nanoantibiotics. Chem Commun (Camb) 50: 9298-9301.
 
44.
Imatani T, Kato T, Okuda K, Yamashita Y (2004): Histatin 5 inhibits apoptosis in human gingival fibroblasts induced by Porphyromonas gingivalis cell-surface polysaccharide. Eur J Med Res 9: 528-532.
 
45.
Cirioni O, Giacometti A, Ghiselli R, et al. (2004): Potential therapeutic role of histatin derivative P-113D in experimental rat models of Pseudomonas aeruginosa sepsis. J Infect Dis 190: 356-364.
 
46.
Welling MM, Brouwer CPJM, van’t Hof W, et al. (2007): Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob Agents Chemother 51: 3416-3419.
 
47.
Oppenheim FG, Helmerhorst EJ, Lendenmann U, Offner GD (2012): Anti-candidal activity of genetically engineered histatin variants with multiple functional domains. PLoS One 7: e51479.
 
48.
Tati S, Li R, Puri S, et al. (2014): Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis. Antimicrob Agents Chemother 58: 756-766.
 
49.
Tsybikov NN, Petrisheva IV, Fefelova EV, et al. (2016): Plasma -defensins are elevated during exacerbation of atopic dermatitis. Clin Exp Dermatol 41: 253-259.
 
50.
Németh BC, Várkonyi T, Somogyvári F, et al. (2014): Relevance of -defensins (HNP1-3) and defensin -1 in diabetes. World J Gastroenterol 20: 9128-9137.
 
51.
Hofman J, Szkaradkiewicz AK, Karpiński TM (2008): Evaluation of defensin (HNP 1-3) presence in saliva and serum of patients with chronic periodontitis. Czas Stomatol 61: 881-885.
 
52.
Harimurti K, Djauzi S, Witarto AB, Dewiasty E (2011): Human -defensin 2 concentration of respiratory tract mucosa in elderly patients with pneumonia and its associated factors. Acta Med Indones-Indones J Intern Med 43: 218-223.
 
53.
Hiratsuka T, Mukae H, Iiboshi H, et al. (2003): Increased concentrations of human -defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 58: 425-430.
 
54.
Gornowicz A, Tokajuk G, Bielawska A, et al. (2014): The assessment of sIgA, histatin-5, and lactoperoxidase levels in saliva of adolescents with dental caries. Med Sci Monit 20: 1095-1100.
 
55.
Torres SR, Garzino-Demo A, Meiller TF, et al. (2008): Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52: 11-15.
 
56.
Sahin O, Ziaei A, Karaismailog¡lu E, Taheri N (2016): The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol 16: 19.
 
57.
Thomas NJ, Carcillo JA, Doughty LA, et al. (2002): Plasma concentrations of defensins and lactoferrin in children with severe sepsis. Pediatr Infect Dis J 21: 34-38.
 
58.
Moslemi M, Sattari M, Kooshki F, et al. (2015): Relationship of salivary lactoferrin and lysozyme concentrations with early childhood caries. J Dent Res Dent Clin Dent Prospects 9: 109-114.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top