EXPERIMENTAL IMMUNOLOGY
Potential immunotoxic effects of trichloroethylene-induced IV allergic reaction in renal impairment
 
More details
Hide details
 
Submission date: 2016-03-28
 
 
Final revision date: 2016-08-11
 
 
Acceptance date: 2016-09-07
 
 
Publication date: 2017-08-08
 
 
Cent Eur J Immunol 2017;42(2):140-149
 
KEYWORDS
ABSTRACT
Trichloroethylene (TCE) is known to induce allergic contact dermatitis and subsequent occupational medicamentosa-like dermatitis (OMLD) with multi-system injuries, including liver, kidney, and skin injuries. However, the mechanisms underlying immune system dysfunction that result in organ injury have not yet been clearly elucidated. In the present study, we measured the levels of secreted cytokines by effect or T cells in TCE-treated guinea pigs to better understand the contribution of allergic disorders in renal injuries. We immunized guinea pigs with trichloroethylene using the Guinea Pig Maximization Test (GPMT) and scored the inflammation on the guinea pigs’ skin. The kidney function and ultra-structural changes in the kidneys were detected using biochemical methods and electron microscopy. The deposition of cytokines was determined using immunohistochemistry. The sensitization rate was 63.16% in the TCE-sensitized groups. The electron microscopy results showed tubular epithelial cell mitochondrial swelling, vacuolar degeneration, and atrophy of the microvillus in the sensitized groups. A high degree of cytokine deposition was observed in the renal tubular proximal epithelial cells in the TCE-sensitized groups. As observed in this study, the variation in the level of immune system activation not only indicates that TCE can largely magnify the immune reaction but also suggests a potential role of immune dysfunction in renal impairment.
REFERENCES (24)
1.
Shen T, Zhu QX, Yang S, et al. (2008): Trichloroethylene induced cutaneous irritation in BALB/c hairless mice: histopathological changes and oxidative damage. Toxicology 248: 113-120.
 
2.
Moran MJ, Zogorski JS, Squillace PJ (2007): Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41: 74-81.
 
3.
Bakke B, Stewart PA, Waters MA (2007): Uses of and exposure to trichloroethylene in U.S. industry: a systematic literature review. J Occup Environ Hyg 4: 375-390.
 
4.
Nakajima T, Yamanoshita O, Kamijima M, et al. (2003): Generalized skin reactions in relation to trichloroethylene exposure: a review from the viewpoint of drug-metabolizing enzymes. J Occup Health 45: 8-14.
 
5.
Khan S, Priyamvada S, Khan SA, et al. (2009): Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues. Food Chem Toxicol 47: 1562-1568.
 
6.
Xu X, Yang R, Wu N, et al. (2009): Severe hypersensitivity dermatitis and liver dysfunction induced by occupational exposure to trichloroethylene. Ind Health 47: 107-112.
 
7.
Harth V, Bruning T, Bolt HM (2005): Renal carcinogenicity of trichloroethylene: update, mode of action, and fundamentals for occupational standard setting. Rev Environ Health 20: 103-118.
 
8.
Jollow DJ, Bruckner JV, McMillan DC, et al. (2009): Trichloroethylene risk assessment: a review and commentary. Crit Rev Toxicol 39: 782-797.
 
9.
Lock EA, Reed CJ (2006): Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol Sci 91: 313-331.
 
10.
Kobayashi R, Ikemoto T, Seo M, et al. (2010): Enhancement of immediate allergic reactions by trichloroethylene ingestion via drinking water in mice. J Toxicol Sci 35: 699-707.
 
11.
Zhang L, Bassig BA, Mora JL, et al. (2013): Alterations in serum immunoglobulin levels in workers occupationally exposed to trichloroethylene. Carcinogenesis 34: 799-802.
 
12.
Yu JF, Leng J, Shen T, et al. (2012): Possible role of complement activation in renal impairment in trichloroethylene-sensitized guinea pigs. Toxicology 302: 172-178.
 
13.
Cai P, Konig R, Boor PJ, et al. (2008): Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice. Toxicol Appl Pharmacol 228: 68-75.
 
14.
Jia Q, Zang D, Yi J, et al. (2012): Cytokine expression in trichloroethylene-induced hypersensitivity dermatitis: an in vivo and in vitro study. Toxicol Lett 215: 31-39.
 
15.
Blossom SJ, Pumford NR, Gilbert KM (2004): Activation and attenuation of apoptosis of CD4+ T cells following in vivo exposure to two common environmental toxicants, trichloroacetaldehyde hydrate and trichloroacetic acid. J Autoimmun 23: 211-220.
 
16.
Blossom SJ, Doss JC, Hennings LJ, et al. (2008): Developmental exposure to trichloroethylene promotes CD4+ T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice. Toxicol Appl Pharmacol 231: 344-353.
 
17.
Wang G, Wang J, Fan X, et al. (2012): Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: dose- and time-response studies in female MRL+/+ mice. Toxicology 292: 113-122.
 
18.
Bassig BA, Zhang L, Tang X, et al. (2013): Occupational exposure to trichloroethylene and serum concentrations of IL-6, IL-10, and TNF-αlpha. Environ Mol Mutagen 54: 450-454.
 
19.
Zhang YF, Li PM, Zhang ZM, Luo B (2013): Analysis the changes of peripheral blood routine and T lymphocyte subsets of trichloroethylene induced medicamentosa-like dermatitis patients. International Journal of Laboratory Medicine 33: 2565-2566.
 
20.
Zhu J, Paul WE (2010): Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238: 247-262.
 
21.
Mahajan SG, Mehta AA (2011): Suppression of ovalbumin-induced Th2-driven airway inflammation by beta-sitosterol in a guinea pig model of asthma. Eur J Pharmacol 650: 458-464.
 
22.
Fernandez TD, Mayorga C, Torres MJ (2008): Cytokine and chemokine expression in the skin from patients with maculopapular exanthema to drugs. Allergy 63: 712-719.
 
23.
Qiang Jia, Dan Zang, Juan Yi (2012): Cytokine expression in trichloroethylene-induced hypersensitivity dermatitis: An in vivo and in vitro study. Toxicology Letters 215: 31-39.
 
24.
Guo RJ, Wang L, Shen T (2009): Changes of serum TNF-and IL-1 levels in guinea pig sensitized with trichloroethylene. China Occupational Medicine 6: 467-469.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top