REVIEW PAPER
MicroRNAs as regulators of drug abuse and immunity
 
More details
Hide details
 
Submission date: 2015-10-09
 
 
Final revision date: 2016-01-04
 
 
Acceptance date: 2016-05-02
 
 
Publication date: 2017-01-24
 
 
Cent Eur J Immunol 2016;41(4):426-434
 
KEYWORDS
ABSTRACT
MicroRNAs (miRNAs) are 20-22 nucleotide non-coding RNAs that participate in gene regulation. They bind to 3’-untranslated regions of their mRNA targets, inhibiting the transcripts’ translation and/or destabilizing them. Chronic drug abuse induces changes of miRNAs expression in the brain, which is thought to contribute to addictive behaviors. Lots of miRNAs have been identified to play critical roles in the development of drug addiction. Moreover, miRNAs have been shown to play critical roles in a broad array of biologic processes, including regulation of the cell cycle, oncogenic transformation, immune cell regeneration and differentiation, and psychiatry disorders. We hypothesized that chronic drug abuse leads to aberrant expression of several miRNAs, and then aberrant miRNAs influence the innate and adaptive immunity, especially differentiation and function of T cells and B cells, through down-regulated miRNAs’ target gene expression. Characterization of miRNA actions is important and has high potential effect for the management of drug addiction and immunity diseases. miRNAs are potential biomarkers, and the modulation of their expression can be used for therapeutic purposes.
REFERENCES (87)
1.
United Nations Office on Drugs, and Crime (UNODC) (2013): World Drug Report 2013.
 
2.
Hyman SE, Malenka RC (2001): Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2: 695-703.
 
3.
Wang J, Barke RA, Ma J, et al. (2008): Opiate abuse, innate immunity, and bacterial infectious diseases. Arch Immunol Ther Exp 56: 299-309.
 
4.
Baldwin GC, Tashkin DP, Buckley DM, et al. (1997): Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 156: 1606-1613.
 
5.
Szabo G, Mandrekar P (2009): A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33: 220-232.
 
6.
McAllister-Sistilli CG, Caggiula AR, Knopf S, et al. (1998): The effects of nicotine on the immune system. Psychoneuroendocrinology 23: 175-187.
 
7.
Pellegrino T, Bayer BM (1998): In vivo effects of cocaine on immune cell function. J Neuroimmunol 83: 139-147.
 
8.
Sun XY, Lu J, Zhang L, et al. (2015): Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci 22: 570-574.
 
9.
Song HT, Sun XY, Zhang L, et al. (2014): A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res 54: 134-140.
 
10.
Hsu R, Schofield CM, Dela Cruz CG, et al. (2012): Loss of microRNAs in pyramidal neurons leads to specific changes in inhibitory synaptic transmission in the prefrontal cortex. Mol Cell Neurosci 50: 283-292.
 
11.
Dai R, Ahmed SA (2011): MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157: 163-179.
 
12.
Renthal W, Kumar A, Xiao G, et al. (2009): Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62: 335-348.
 
13.
Hollander JA, Im HI, Amelio AL, et al. (2010): Striatal microRNA controls cocaine intake through CREB signaling. Nature 466: 197-202.
 
14.
Im HI, Hollander JA, Bali P, et al. (2010): MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13: 1120-1127.
 
15.
Xu LF, Wang J, Lv FB, et al. (2013): Functions of microRNA in response to cocaine stimulation. Genet Mol Res 12: 6160-6167.
 
16.
Nudelman AS, DiRocco DP, Lambert TJ, et al. (2010): Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20: 492-498.
 
17.
Klein ME, Lioy DT, Ma L, et al. (2007): Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10: 1513-1514.
 
18.
Chandrasekar V, Dreyer JL (2009): microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42: 350-362.
 
19.
Chandrasekar V, Dreyer JL (2011): Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36: 1149-1164.
 
20.
López-Bellido R, Barreto-Valer K, Sánchez-Simón FM, et al. (2012): Cocaine modulates the expression of opioid receptors and miR-let-7d in zebrafish embryos. PLoS One 7: e50885.
 
21.
Saba R, Störchel PH, Aksoy-Aksel A, et al. (2012): Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32: 619-632.
 
22.
Chen CL, Liu H, Guan X (2013): Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J Biomed Sci 20: 96.
 
23.
Barreto-Valer K, López-Bellido R, Macho Sánchez-Simón F, et al. (2012): Modulation by cocaine of dopamine receptors through miRNA-133b in zebrafish embryos. PLoS One 7: e52701.
 
24.
Ng TK, Carballosa CM, Pelaez D, et al. (2012): Nicotine alters microRNA expression and hinders human adult stem cell regenerative potential. Stem Cells Dev 22: 781-790.
 
25.
Huang W, Li MD (2009): Nicotine modulates expression of miR-140*, which targets the 3’-untranslated region of dynamin 1 gene (Dnm1). Int J Neuropsychopharmacol 12: 537-546.
 
26.
Zhang Y, Pan T, Zhong X, et al. (2014): Nicotine upregulates microRNA-21 and promotes TGF--dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol 35: 7063-7072.
 
27.
Maccani MA, Avissar-Whiting M, Banister CE, et al. (2010): Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5: 583-589.
 
28.
Shan H, Zhang Y, Lu Y, et al. (2009): Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 83: 465-472.
 
29.
Wang L, Li X, Zhou Y, et al. (2014): Downregulation of miR-133 via MAPK/ERK signaling pathway involved in nicotine-induced cardiomyocyte apoptosis. Naunyn Schmiedebergs Arch Pharmacol 387: 197-206.
 
30.
Takahashi K, Yokota S, Tatsumi N, et al. (2013): Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 272: 154-160.
 
31.
Wu Q, Zhang L, Law PY, et al. (2009): Long-term morphine treatment decreases the association of µ-opioid receptor (MOR1) mRNA with polysomes through miRNA23b. Mol Pharmacol 75: 744-750.
 
32.
He Y, Yang C, Kirkmire CM, et al. (2010): Regulation of opioid tolerance by let-7 family microRNA targeting the µ opioid receptor. J Neurosci 30: 10251-10258.
 
33.
Zheng H, Zeng Y, Zhang X, et al. (2010): mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD. Mol Pharmacol 77: 102-109.
 
34.
Tatro ET, Hefler S, Shumaker-Armstrong S, et al. (2013): Modulation of BK channel by microRNA-9 in neurons after exposure to HIV and methamphetamine. J Neuroimmune Pharmacol 8: 1210-1223.
 
35.
Sathyan P, Golden HB, Miranda RC (2007): Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27: 8546-8557.
 
36.
Wang LL, Zhang Z, Li Q, et al. (2009): Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24: 562-579.
 
37.
Bahi A, Dreyer JL (2013): Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. Eur J Neurosci 38: 2328-2337.
 
38.
Qi Y, Zhang M, Li H, et al. (2014): MicroRNA-29b regulates ethanol-induced neuronal apoptosis in the developing cerebellum through SP1/RAX/PKR cascade. J Biol Chem 289: 10201-10210.
 
39.
Mizuo K, Katada R, Okazaki S, et al. (2012): Epigenetic regulation of MIR-124 under ethanol dependence and withdrawal. Nihon Arukoru Yakubutsu Igakkai Zasshi 47: 155-163.
 
40.
Pietrzykowski AZ, Friesen RM, Martin GE, et al. (2008): Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59: 274-287.
 
41.
Tapocik JD, Solomon M, Flanigan M, et al. (2013): Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. Pharmacogenomics J 13: 286-296.
 
42.
Dong X, Liu H, Chen F, et al. (2014): MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcohol Clin Exp Res 38: 68-77.
 
43.
Kenny PJ (2014): Epigenetics, microRNA, and addiction. Dialogues Clin Neurosci 16: 335.
 
44.
Asquith M, Pasala S, Engelmann F, et al. (2014): Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates. Alcohol Clin Exp Res 38: 980-993.
 
45.
Lewohl JM, Nunez YO, Dodd PR, et al. (2011): Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 35: 1928-1937.
 
46.
Taganov KD, Boldin MP, Chang KJ, et al. (2006): NF-B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103: 12481-12486.
 
47.
Hou J, Wang P, Lin L, et al. (2009): MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183: 2150-2158.
 
48.
Chassin C, Kocur M, Pott J, et al. (2010): miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8: 358-368.
 
49.
Pauley KM, Stewart CM, Gauna AE, et al. (2011): Altered miR-146a expression in Sjogren’s syndrome and its functional role in innate immunity. Eur J Immunol 41: 2029-2039.
 
50.
Rebane A, Runnel T, Aab A, et al. (2014): MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 134: 836-847.
 
51.
Schulte LN, Westermann AJ, Vogel J (2013): Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41: 542-553.
 
52.
Curtis AM, Fagundes CT, Yang G, et al. (2015): Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A 112: 7231-7236.
 
53.
Cai X, Yin Y, Li N, et al. (2012): Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 4: 341-343.
 
54.
Ghorpade DS, Leyland R, Kurowska-Stolarska M, et al. (2012): MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 32: 2239-2253.
 
55.
Koch M, Mollenkopf HJ, Klemm U, et al. (2012): Induction of microRNA-155 is TLR-and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 109: E1153-E1162.
 
56.
Cardoso AL, Guedes JR, Pereira de Almeida L, et al. (2012): miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135: 73-88.
 
57.
Wang P, Hou J, Lin L, et al. (2010): Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 185: 6226-6233.
 
58.
Richmond TK, Tili E, Chiabai M, et al. (2015): Functional Interaction of Mir-155, a pro-inflammatory microRNA, and quaking in the innate immune response. J Allergy Clin Immunol 135: AB97.
 
59.
Lu C, Huang X, Zhang X, et al. (2011): miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117: 4293-4303.
 
60.
Zhou H, Huang X, Cui H, et al. (2010): miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116: 5885-5894.
 
61.
Martinez-Nunez RT, Louafi F, Friedmann PS, et al. (2009): MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284: 16334-16342.
 
62.
Wanet A, Tacheny A, Arnould T, et al. (2012): miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40: 4742-4753.
 
63.
Nahid MA, Yao B, Dominguez-Gutierrez PR, et al. (2013): Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190: 1250-1263.
 
64.
Chen RF, Huang HC, Ou CY, et al. (2010): MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clin Exp Allergy 40: 1482-1490.
 
65.
Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. (2010): Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11: 141-147.
 
66.
Ebert PJ, Jiang S, Xie J, et al. (2009): An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol 10: 1162-1169.
 
67.
Li QJ, Chau J, Ebert PJ, et al. (2007): miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129: 147-161.
 
68.
Li G, Yu M, Lee WW, et al. (2012): Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med 18: 1518-1524.
 
69.
Vigorito E, Kohlhaas S, Lu D, et al. (2013): miR-155: an ancient regulator of the immune system. Immunol Rev 253: 146-157.
 
70.
Kuchen S, Resch W, Yamane A, et al. (2010): Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32: 828-839.
 
71.
Blüml S, Bonelli M, Niederreiter B, et al. (2010): Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum 63: 1281-1288.
 
72.
O’Connell RM, Kahn D, Gibson WS, et al. (2010): MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33: 607-619.
 
73.
Rodriguez A, Vigorito E, Clare S, et al. (2007): Requirement of bic/microRNA-155 for normal immune function. Science 316: 608-611.
 
74.
Thai TH, Calado DP, Casola S, et al. (2007): Regulation of the germinal center response by microRNA-155. Science 316: 604-608.
 
75.
Lu LF, Thai TH, Calado DP, et al. (2009): Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30: 80-91.
 
76.
Curtale G, Citarella F, Carissimi C, et al. (2010): An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115: 265-273.
 
77.
Lu LF, Boldin MP, Chaudhry A, et al. (2010): Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142: 914-929.
 
78.
Rusca N, Monticelli S (2011): MiR-146a in immunity and disease. Mol bio inter 2011: 1-7.
 
79.
Xiao C, Calado DP, Galler G, et al. (2007): MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131: 146-159.
 
80.
Zhou B, Wang S, Mayr C, et al. (2007): miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 104: 7080-7085.
 
81.
Chen CZ, Li L, Lodish HF, et al. (2004): MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83-86.
 
82.
Rao DS, O’Connell RM, Chaudhuri AA, et al. (2010): MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 33: 48-59.
 
83.
Zhang Y, Roccaro AM, Rombaoa C, et al. (2012): LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood 120: 1678-1686.
 
84.
Chen L, Cui B, Zhang S, et al. (2014): MicroRNA-155 In chronic lymphocytic leukemia influences B-cell receptor signaling. Cancer Res 74: S975-975.
 
85.
Sandhu SK, Volinia S, Costinean S, et al. (2012): miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A 109: 20047-20052.
 
86.
Dorsett Y, McBride KM, Jankovic M, et al. (2008): MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28: 630-638.
 
87.
de Yébenes VG, Belver L, Pisano DG, et al. (2008): miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med 205: 2199-2206.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top