CLINICAL IMMUNOLOGY
Amount and distribution of selected biologically active factors in amniotic membrane depends on the part of amnion and mode of childbirth. Can we predict properties of amnion dressing? A proof-of-concept study
More details
Hide details
Submission date: 2016-10-27
Final revision date: 2016-12-11
Acceptance date: 2017-01-03
Publication date: 2018-03-30
Cent Eur J Immunol 2018;43(1):97-102
KEYWORDS
ABSTRACT
Aim of the study: The amniotic membrane is used as a dressing material e.g. in ocular surgery or treatment of non-healing wounds. Noteworthy, results of previous studies differ significantly, presumably due to biological properties of amnion. Some authors suggest that these properties may depend on inter-donor variations, as well as method of delivery. The aim of our study was to analyze the content of selected factors important for tissue regeneration in various areas of amnion samples originating from elective cesarean sections and on-term natural deliveries.
Material and methods: Cervical and placental samples of amniotic membranes originating from physiological deliveries and cesarean sections have been collected with subsequent preparation of amniotic membrane extracts. The screening of amnion samples was performed using proteome microarray system.
Results: In all of the amnion samples high amounts of angiogenin, IGF-binding proteins-1, -2 and -3, serine protease inhibitor E1 and TIMP-1 have been detected. Important variations in the content of these factors have been observed between physiological delivery and cesarean section-derived membranes, as well as between placental and cervical portions of the same membrane.
Conclusions: Our study has shown that the content of selected growth factors and regulators of ECM turnover in amniotic membrane samples vary between various donations, as well as depend on region of membrane or delivery method. This may determine its potential applications in wound treatment and ophthalmologic surgery. However, our observations require further verification in clinical settings.
REFERENCES (36)
1.
Koob TJ, Lim JJ, Massee M, et al. (2004): Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vascular Cell 1: 6-10.
2.
Niknejad H, Peirovi H, Jorjani M, et al. (2008): Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 29: 88-99.
3.
Riau A, Beuerman RW, Lim LS, Mehta J (2010): Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31: 216-225.
4.
Fatima A, Sangwan VS, Iftekhar G, et al. (2006): Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med 52: 257-261.
5.
Yang L, Shirakata Y, Shudou M, et al. (2006): New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res 326: 69-77.
6.
Muralidharan S, Gu J, Laub GW, et al. (1991): A new biological membrane for pericardial closure. J Biomed Mater Res 25: 1201-1209.
7.
Zmijewski M, Pietraszek A (2005): The application of deep-frozen and radiation-sterilized human amnion as a biological dressing to prevent prolonged air leakage in thoracic surgery. Ann Transplant 10: 17-20.
8.
Tauzin H, Humbert P, Viennet C, et al. (2011): Human amniotic membrane in the management of chronic venous leg ulcers. Ann Dermatol Venereol 138: 572-579.
9.
Litwiniuk M, Bikowska B, Niderla-Bielinska J, et al. (2012): Potential role of metalloproteinase inhibitors from radiation sterilized amnion dressings in the healing of venous leg ulcers. Mol Med Rep 6: 723-728.
10.
Mermet I, Pottier N, Sainthillier JM, et al. (2007): Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen 15: 459-464.
11.
Russo A, Bonci P, Bonci P (2012): The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank 13: 353–361.
12.
Wolbank S, Hildner F, Redl H et al (2009): Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3: 651-654.
13.
Litwiniuk M, Bikowska B, Niderla-Bielińska J, et al. (2011): High molecular weight hyaluronan and stroma-embedded factors of radiation-sterilized amniotic membrane stimulate proliferation of HaCaT cell line in vitro. Centr Eur J Immunol 36: 205-211.
14.
McParland PC, Taylor DJ, Bell SC (2003): Mapping of zones of altered morphology and chorionic connective tissue cellular phenotype in human fetal membranes (amniochorion and decidua) overlaying the lower uterine pole and cervix before labor at term. Am J Obstet Gynecol 189: 1481-1488.
15.
McLaren J, Malak TM, Bell SC (1999): Structural characteristics of term human fetal membranes prior to labour: identification of an area of altered morphology overlying the cervix. Human Reproduction 14: 237-241.
16.
Malak TM, Bell SC (1994): Structural characteristics of term human fetal membranes (amniochorion and decidua): a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynecol 101: 375-386.
17.
El Khwad M, Stetzer B, Moore RM, et al. (2005): Term human fetal membranes have a weak zone overlying the lower uterine pole and cervix before the onset of labor. Biol Reprod 72: 720-726.
18.
El Khwad M, Pandey V, Stetzer B, et al. (2006): Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodelling. J Soc Gynecol Investig 13: 191-195.
19.
Gicquel JJ, Dua HS, Brodie A, et al. (2009): Epidermal Growth Factor Variations in Amniotic Membrane Used for Ex Vivo Tissue Constructs. Tissue Engineering 15: 1919-1927.
20.
Hopkinson A, McIntosh RS, Tighe PJ, et al. (2006): Amniotic membrane for ocular surface reconstruction: donor variations and the effect of handling on TGF-beta content. Invest Ophthalmol Vis Sci 47: 4316-4322.
21.
Moore RM, Mansour JM, Redline RW, et al. (2006): The Physiology of Fetal Membrane Rupture: Insight Gained from the Determination of Physical Properties. Placenta 27: 1037-1051.
22.
Skinner SJ, Campos GA, Liggins GC (1981): Collagen content of human amniotic membranes: effect of gestation length and premature rupture. Obstet Gynecol 57: 487-489.
23.
Velez DR, Fortunato SJ, Morgan N, et al. (2008): Patterns of cytokine profiles differ with pregnancy outcome and ethnicity. Hum Reprod 23: 1902–1909.
24.
Barrientos S, Stojadinovic O, Golinko, et al. (2008): Growth factors and cytokines in wound healing. Wound Repair Regen 16: 585–601.
25.
Edmondson SR, Thumiger SP, Werther GA, Wraight CJ (2003): Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 24: 737-764.
26.
Distler O, Neidhart M, Gay RE, Gay S (2002): The molecular control of angiogenesis. Int Rev Immunol 21: 33-49.
27.
Grzela T, Bikowska B, Litwiniuk M: Matrix metalloproteinases in aortic aneurysm - executors or executioners? In: Etiology, Pathogenesis and Pathophysiology of Aortic Aneurysms and Aneurysm Rupture. Grundmann R (ed.). Intech Publ, 2011, 25-54. Available from:
http://www.intechopen. com/articles/show/title/matrix-metalloproteinases-in-aorticaneurysm-executors-or -executioners-.
28.
Rayment EA, Upton Z, Shooter GK (2008): Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol 158: 951-961.
29.
Saito S, Trovato MJ, You R, et al. (2001): Role of matrix metalloproteinases 1, 2, and 9 and tissue inhibitor of matrix metalloproteinase-1 in chronic venous insufficiency. J Vasc Surg 34: 930-938.
30.
Ghosh AK, Vaughan DE (2012): PAI-1 in Tissue Fibrosis. J Cell Physiol 227: 493–507.
31.
Ghersi G, Dong H, Goldstein LA, et al. (2002): Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 277: 29231-29241.
32.
Providence KM, Higgins PJ (2004): PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 200: 297-308.
33.
Providence KM, Higgins SP, Mullen A, et al. (2008): SERPINE1 (PAI-1) is deposited into keratinocyte migration “trails” and required for optimal monolayer wound repair. Arch Dermatol Res 300: 303-310.
34.
Simone TM, Longmate WM, Law BK, Higgins PJ (2015): Targeted Inhibition of PAI-1 Activity Impairs Epithelial Migration and Wound Closure Following Cutaneous Injury. Adv Wound Care 4: 321-328.
35.
Duffy M (2004): The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 10: 39-49.
36.
Banerjee A, Weidinger A, Hofer M, et al. (2015): Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 36: 1329-1332.