EXPERIMENTAL IMMUNOLOGY
Immunotoxicity evaluation of novel bioactive composites in male mice as promising orthopaedic implants
 
More details
Hide details
 
Submission date: 2015-10-27
 
 
Final revision date: 2016-08-22
 
 
Acceptance date: 2016-09-08
 
 
Publication date: 2017-05-08
 
 
Cent Eur J Immunol 2017;42(1):54-67
 
KEYWORDS
ABSTRACT
Objective: In orthopaedics, novel bioactive composites are largely needed to improve the synthetic achievement of the implants. In this work, semiconducting metal oxides such as SiO2, TiO2, and ZrO2 particles (Ps) were used individually and in different ratios to obtain different biphasic composites. The immunotoxicity of these composites was tested to inspect the potential toxicity prior to their use in further medical applications.
Materials and methods: In vitro mineralisation ability was inspected by soaking the composites in simulated body fluid (SBF). Additionally, in vivo experiments were performed consuming male mice using ISSR-PCR, micronucleus (MN) test, comet assay, glutathione peroxidase activity, and determination of albumin, globulin, lymphocyte population, ALT, and AST levels. Several groups of adult male albino mice were treated with 100, 200, and 400 mg/kg body weight of SiO2, TiO2, and ZrO2-Ps in pure or mixed forms.
Results: Our findings revealed that treatment of mice with low and medium doses of SiO2, TiO2, and ZrO2-Ps in pure or mixed form revealed values relatively similar to the control group. However, using 400 mg/kg especially from TiO2-Ps in genuine form or mixed with SiO2 showed proliferation in the toxicity rates compared with the high dose of SiO2 and ZrO2-Ps.
Conclusions: The results suggest that TiO2 composite induced in vivo toxicity, oxidative DNA damage, bargain of the antioxidant enzymes, and variations in the levels of albumin, globulin, lymphocyte population, ALT, and AST in a dose-dependent manner. However, SiO2, and ZrO2 composites revealed a lower toxicity in mice compared with that of TiO2.
REFERENCES (62)
1.
Hench LL (1991): Bioceramics: from concept to clinic. J Am Ceram Soc 74: 1487-1510.
 
2.
LeGeros RZ, LeGeros JP: Dense hydroxyapatite. In: An introduction to bioceramics. Hench LL, Wilson J (eds.). Singapore, World Scientific. 1993; 139-180.
 
3.
Gross UM, Muller-Mai C, Voigt C: Ceravital bioactive ceramics. In: An introduction to bioceramics. Hench LL, Wilson J (eds.). Singapore, World Scientific. 1993; 105-124.
 
4.
Kokubo T, Shigematsu M, Nagashima Y, et al. (1982): Apatite and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60: 260-268.
 
5.
Kokubo T: A/W glass-ceramics: processing and properties. In: An introduction to bioceramics. Hench LL, Wilson J (eds.). Singapore, World Scientific. 1993; 75-88.
 
6.
Kokubo T (1991): Bioactive glass ceramics: properties and applications. Biomaterials 12: 155-163.
 
7.
Kokubo T, Ito S, Huang ZT, et al. (1990): Ca, P-rich layer formed on high-strength bioactive glass-ceramic A–W. J Biomed Mater Res 24: 331-343.
 
8.
Kokubo T, Kushitani H, Sakka S, et al. (1990): Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A–W. J Biomed Mater Res 24: 721-734.
 
9.
Cho SB, Nakanishi K, Kokubo T, et al. (1995): Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78: 1769-1774.
 
10.
Kokubo T, Takadama H (2006): How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27: 2907-2915.
 
11.
Ohtsuki C, Kamitakahara M, Miyazaki T (2009): Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 6: S349-S360.
 
12.
Zhang YH, Reller A (2003): Investigation of mesoporous and microporous nanocrystalline silicon doped titania. Materials Letters 57: 4108-4113.
 
13.
Jiang XC, Herricks T, Xia YN (2003): One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15: 1205-1209.
 
14.
Haugen H, Will J, Kohler A, et al. (2004): Ceramic TiO2- foams: characterization of a potential scaffold. J Eur Ceram Soc 24: 661-668.
 
15.
Meretoja VV, Tirri T, Aaritalo V, et al. (2007): Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds. Tissue Eng 13: 855-863.
 
16.
Wu JM, Liu JF, Hayakawa S, et al. (2007): Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. J Mater Sci Mater Med 18: 1529-1536.
 
17.
Hong SS, Lee MS, Park SS, et al. (2003): Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catal Today 87: 99-105.
 
18.
Soo WL, Morillo C, Lira-Olivares J, et al. (2003): Tribological and microstructural analysis of Al2O3/TiO2 nanocomposites to use in the femoral head of hip replacement. Wear 255: 1040-1044.
 
19.
Li J, Hastings GW: In: Handbook of Biomaterial Properties. Black J, Hastings GW (eds.). Chapman and Hall, London, New York. 1998; 340.
 
20.
Burger W, Richter HG, Piconi C, et al. (1997): New Y-TZP powders for medical grade zirconia. J Mater Sci Mater Med 8: 113-118.
 
21.
Liang H, Huang Y, He F, et al. (2007): Enhanced calcium phosphate precipitation on the surface of Mg-Ion-implanted ZrO2 bioceramic. Surf Rev Lett 14: 71-77.
 
22.
Cales B (2000): Zirconia as a sliding material. Clin Orthop Relat Res 379: 94-112.
 
23.
Clarke IC, Manaka M, Green DD, et al. (2003): Current status of zirconia used in total hip implants. J Bone Joint Surg Am 85: 73-84.
 
24.
Kosmac T, Oblak C, Jevnikar P, et al. (2000): Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res 53: 304-313.
 
25.
Benzaid R, Chevalier J, Malika Saadaoui M, et al. (2008): Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials 29: 3636-3641.
 
26.
Uchida M, Kim HM, Kokubo T, et al. (2002): Apatite forming ability of a Zirconia/ Alumina nano composite induced by chemical treatment. J Biomed Mater Res 60: 277-282.
 
27.
Sharif MA, Sueyoshi H (2008): Microstructure and Properties of Wet Mixed Pyrolyzed ZrO2/Si/Phenol Resin Composite. Synth React Inorg Met Org Chem 38: 194-200.
 
28.
Yan YY, Lu C (2009): Ultraviolet enhanced bioactivity of zirconia films prepared by micro-arc oxidation. Thin Solid Films 517: 1577-1581.
 
29.
Ohtsuki C, Iida H, Nakamura S, et al. (1997): Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35: 39-47.
 
30.
Velmurugan R, Kanagesan S, Jesurani S, et al. (2010): Surface Bioactivity of Sol Gel Derived 3Y-TZP Bioinert Ceramic through Hydroxylation Technique using 5M NaOH. Eur J Sci Res 41: 430-436.
 
31.
Najda J, Goss M, Gmiński J, et al. (1994): The antioxidant enzymes activity in the conditions of systemic hypersilicemia. Biol Trace Elem Res 42: 63-70.
 
32.
Asahida T, Kobayashi T, Saitoh K, et al. (1996): Nakayama I. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62: 727-730.
 
33.
Ueda T, Hayashi M, Koide N, et al. (1992): A preliminary study of the micronucleus test by acridine orange fluorescent staining compared with chromosomal aberration test using fish erythropoietic and embryonic cells. Water Sci Technol 25: 235-240.
 
34.
Fairbairn DW, Olive PL, O’Neill KL (1995): Comet assay: A comprehensive review. Mutat Res 339: 37-59.
 
35.
Collins A, Dusinska M, Franklin (1997): Comet assay in human biomonitoring studies: Reliability, validation, and applications. Environ Mol Mutagen 30: 139-146.
 
36.
El-Megeed GA, Khalil WKB, Abdel Raouf A, et al. (2008): Synthesis and in vivo anti-mutagenic activity of novel melatonin derivatives. Eur J Med Chem 43: 763-770.
 
37.
Zárybnická L, Vávrová J, Havelek R, et al. (2013): Lymphocyte subsets and their H2AX phosphorylation in response to in vivo irradiation in rats. Int J Radiat Biol 89: 110-117.
 
38.
Rasmy GE, Khalil WKB, Moharib SA, et al. (2011): Dietary fish oil modulates the effect of dimethylhydrazine-induced colon cancer in rats. Grasas y Aceites 62: 253-267.
 
39.
SAS (1982): SAS user’s guide: statistics, edn. SAS Institute Inc., Cary, NC.
 
40.
Karlsson KH (2004): Bioactivity of glass and bioactive glasses for bone repair. Glass Technology 45: 157-161.
 
41.
Ebisawa Y, Kokubo T, Ohura K, et al. (1990): Bioactivity of CaO•SiO2-based glasses: in vitro evaluation. J Mater Sci: Mater Med 1: 239-244.
 
42.
Beherei HH, Mohamed KR, El-Bassyouni GT (2009): Fabrication and characterization of bioactive glass (45S5)/titania Biocomposites. Ceramics International 35: 1991-1997.
 
43.
Gerhardt LC, Jell GMR, Boccaccini AR (2007): Titanium dioxide (TiO2) nanoparticles filled poly (D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci: Mater Med 18:1287-1298.
 
44.
Canesi L, Ciacci C, Betti M, et al. (2008): Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ Int 34: 1114.
 
45.
Schrand AM, Rahman MF, Hussain SM, et al. (2010): Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5): 544-68.
 
46.
Heckmann LH, Hovgaard MB, Sutherland DS, et al. (2011): Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20: 226-233.
 
47.
Adams LK, Lyon DY, Alvarez PJJ (2006): Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40: 3527-3532.
 
48.
Lovern SB, Klaper R (2006): Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ Toxicol Chem 25:1132-1137.
 
49.
Lindberg HK, Falck GCM, Catalán J, et al. (2012): Genotoxicity of inhaled nanosized TiO2 in mice. Mutat Res 745: 58–64.
 
50.
Sadiq R, Bhalli JA, Yan J, et al. (2012): Genotoxicity of TiO2 anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric micronucleus assays. Mutat Res 745: 65-72.
 
51.
Warheit DB, Webb TR, Sayes CM, et al. (2006): Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91: 227-236.
 
52.
Grassian VH, O’shaughnessy PT, Adamcakova- Dodd A, et al. (2007): Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115: 397-402.
 
53.
Sayes CM, Wahi R, Kurian PA, et al. (2006): Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92: 174-185.
 
54.
Gurr JR, Wang AS, Chen CH, et al. (2005): Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213: 66-73.
 
55.
Long TC, Saleh N, Tilton RD, et al. (2006): Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40: 4346-4352.
 
56.
Braydich-Stolle LK, Schaeublin NM, Murdock RC, et al. (2009): Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11: 1361-1374.
 
57.
Feig DI, Reid TM, Loeb LA (1994): Reactive oxygen species in tumorigenesis. Cancer Res 54: 1890s-1894s.
 
58.
Trouiller B, Reliene R, Westbrook A, et al. (2009): Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69: 8784-8789.
 
59.
Burdon RH (1995): Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18: 775-794.
 
60.
Duan Y, Liu J, Ma L, et al (2010): Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31: 894-899.
 
61.
Li N, Duan Y, Hong M, et al. (2010): Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicol Lett 195: 161-168.
 
62.
Eydner M, Schaudien D, Creutzenberg O, et al. (2012): Impacts after inhalation of nano- and fine-sized titanium dioxide particles: Morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index. Inhal Toxicol 24: 557-569.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top