EXPERIMENTAL IMMUNOLOGY
Immune complex negatively regulates toll-like receptor 3-triggered tumour necrosis factor α production in B cells
More details
Hide details
Submission date: 2016-03-02
Final revision date: 2016-05-04
Acceptance date: 2016-09-12
Publication date: 2017-10-30
Cent Eur J Immunol 2017;42(3):223-230
KEYWORDS
ABSTRACT
Inappropriate activation of toll-like receptor 3 (TLR3) has been implicated in the pathogenesis of autoimmune diseases, so the negative regulation of TLR3-triggered immune response has received increasing attention. Nonpathogenic immune complex (IC) has been used as treatment for many inflammatory and autoimmune diseases. However, the role of IC in the regulation of TLR3-triggered immune responses and the underlying mechanisms need to be investigated. In this study we demonstrate that IC or intravenous immunoglobulin (Ig) stimulation of B cells attenuates polyinosinic:polycytidylic acid (poly I:C)-induced CD40 expression; IC, but not Ig, can significantly inhibit poly I:C-induced pro-inflammatory tumour necrosis factor α (TNF-α) production by B cells. Moreover, IC/Ig stimulation does not alter the expression of TLR3 in B cells. Further experiments suggest that receptor for the Fc portion of IgGIIb (FcγRIIb) is involved in the suppressive effect of IC on TLR3-mediated TNF-α production, but not CD40 expression. Thus, we provide a new means of negative regulation of TLR3-triggered immune responses in B cells via FcγRIIb, and we provide a new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory or autoimmune diseases.
REFERENCES (32)
1.
O’Neill LA, Golenbock D, Bowie AG (2013): The history of Toll-like receptors-redefining innate immunity. Nat Rev Immunol 13: 453-460.
2.
Zheng Y, An H, Yao M, Hou J, et al. (2010): Scaffolding adaptor protein Gab1 is required for TLR3/4- and RIG-I-mediated production of proinflammatory cytokines and type I IFN in macrophages. J Immunol 184: 6447-6456.
3.
Reynolds JM, Dong C (2013): Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol 34: 511-519.
4.
Mills KH (2011): TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11: 807-822.
5.
Hua Z, Hou B (2013): TLR signaling in B-cell development and activation. Cell Mol Immunol 10: 103-106.
6.
Browne EP (2012): Regulation of B-cell responses by Toll-like receptors. Immunology 136: 370-379.
7.
Green NM, Marshak-Rothstein A (2011): Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol 23: 106-112.
8.
Celhar T, Magalhães R, Fairhurst AM (2012): TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res 53: 58-77.
9.
Mullen LM, Chamberlain G, Sacre S (2015): Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res Ther 17: 122.
10.
Goh FG, Midwood KS (2012): Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 51: 7-23.
11.
Zheng Y, Yang Y, Li Y, et al. (2013): Ephedrine hydrochloride inhibits PGN-induced inflammatory responses by promoting IL-10 production and decreasing proinflammatory cytokine secretion via PI3K/Akt/GSK3 pathway. Cell Mol Immunol 10: 330-337.
12.
Thwaites R, Chamberlain G, Sacre S (2014): Emerging role of endosomal Toll-like receptors in rheumatoid arthritis. Front Immunol 5: 1.
13.
Jiang C, Zhu W, Xu J, et al. (2014): MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res Ther 16: R9.
14.
Guilliams M, Bruhns P, Saeys Y, et al. (2014): The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14: 94-108.
15.
Ravetch JV, Bolland S (2001): IgG Fc receptors. Annu Rev Immunol 19: 275-290.
16.
Smith KG, Clatworthy MR (2010): FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10: 328-343.
17.
Espéli M, Smith KG, Clatworthy MR (2016): FcγRIIB and autoimmunity. Immunol Rev 269: 194-211.
18.
Yuasa T, Kubo S, Yoshino T, et al. (1999): Deletion of fcgamma receptor IIB renders H-2(b) mice susceptible to collagen-induced arthritis. J Exp Med 189: 187-194.
19.
Siragam V, Brinc D, Crow AR, et al. (2005): Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest 115: 155-160.
20.
Clynes R (2005): Immune complexes as therapy for autoimmunity. J Clin Invest 115: 25-27.
21.
Van Egmond M, Vidarsson G, Bakema JE (2015): Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol Rev 268: 311-327.
22.
Zhang Y, Liu S, Liu J, et al. (2009): Immune Complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through FcγRIIb-dependent PGE2 production. J Immunol 182: 554-562.
23.
Perales-Linares R, Navas-Martin S (2013): Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 140: 153-167.
24.
Marshall-Clarke S, Downes JE, Haga IR, et al. (2007): Polyinosinic acid is a ligand for toll-like receptor 3. J Biol Chem 282: 24759-24766.
25.
Schwab I., Nimmerjahn F (2013): Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13: 176-189.
26.
Kessel A, Peri R, Haj T, et al. (2011): IVIg attenuates TLR-9 activation in B cells from SLE patients. J Clin Immunol 31: 30-38.
27.
Bayry J, Lacroix-Desmazes S, Carbonneil C, et al. (2003): Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin. Blood 101: 758-765.
28.
Alaaeddine N, Hassan GS, Yacoub D, Mourad W (2012): CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol 2012: 490148.
29.
Li L, Wang H, Wang B (2008): Anergic cells generated by blocking CD28 and CD40 costimulatory pathways in vitro ameliorate collagen induced arthritis. Cell Immunol 254: 39-45.
30.
Mohammad MK, Morran M, Slotterbeck B, et al. (2006): Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol 18: 1101-1113.
31.
Iannone F, Lopalco G, Rigante D, et al. (2016): Impact of obesity on the clinical outcome of rheumatologic patients in biotherapy. Autoimmun Rev pii: S1568-9972: 30006-30004.
32.
Séïté JF, Cornec D, Renaudineau Y, et al. (2010): IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116: 1698-1704.