CLINICAL IMMUNOLOGY
Correlation of interleukin 6 and transforming growth factor β1 with peripheral blood regulatory T cells in rheumatoid arthritis patients: a potential biomarker
 
More details
Hide details
 
Submission date: 2017-02-01
 
 
Final revision date: 2017-06-17
 
 
Acceptance date: 2017-08-21
 
 
Publication date: 2018-10-30
 
 
Cent Eur J Immunol 2018;43(3):281-288
 
KEYWORDS
ABSTRACT
Introduction:
Proinflammatory cytokines and regulatory T cells (Tregs) are considered as important factors involved in autoimmunity development especially in rheumatoid arthritis (RA).

Aim of the study:
To investigate the frequency of peripheral blood Tregs and related cytokines in RA patients and to determine the possible correlation between Treg percentage and interleukin 6 (IL-6) and transforming growth factor β1 (TGF-β1) as indicators in assessment of Treg function and mechanisms preceding autoimmunity in RA.

Material and methods:
Thirty-seven Iranian RA patients with a moderate (3.2-5.1) disease activity score (DAS) and the same number of healthy age- and sex-matched individuals were enrolled. Frequency of peripheral blood Tregs (CD4+FoxP3+CD25high) was determined by flow cytometry. Serum levels of IL-6 and TGF-β1 and their expression levels in peripheral blood mononuclear cells (PBMCs) were evaluated by ELISA and Q-PCR, respectively.

Results:
Rheumatoid arthritis patients showed significantly lower peripheral blood Treg frequencies compared to healthy individuals. Additionally, Treg (%) showed a significant inverse correlation between serum concentrations of IL-6 and mRNA expression of PBMCs, whereas there was no significant correlation between Treg (%) and TGF-β1 levels.
REFERENCES (42)
1.
Harris ED Jr (1990): Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J Med 322: 1277-1289.
 
2.
Bellucci E, Terenzi R, La Paglia GM, et al. (2016): One year in review 2016: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 34: 793-801.
 
3.
Boissier MC, Assier E, Biton J, et al. (2009): Regulatory T cells (Treg) in rheumatoid arthritis. Joint Bone Spine 76: 10-14.
 
4.
McInnes IB, Schett G (2007): Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7: 429-442.
 
5.
Morita T, Shima Y, Wing JB, et al. (2016): The proportion of regulatory T cells in patients with rheumatoid arthritis: a meta-analysis. PLoS One 11: e0162306.
 
6.
Shevach EM (2009): Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30: 636-645.
 
7.
Burmester GR, Feist E, Dörner T (2014): Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol 10: 77-88.
 
8.
Seif F, Khoshmirsafa M, Mousavi M, et al. (2014): Interleukin-21 receptor might be a novel therapeutic target for the treatment of rheumatoid arthritis. J Exp Clin Med 6: 57-61.
 
9.
Li MO, Flavell RA (2008): TGF-: a master of all T cell trades. Cell 134: 392-404.
 
10.
Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009): Anti-inflammatory and pro-inflammatory roles of TGF-, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9: 447-453.
 
11.
Yoshida Y, Tanaka T (2014): Interleukin 6 and rheumatoid arthritis. Biomed Res Int 2014: 698313.
 
12.
Hashizume M, Mihara M (2011): The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011: 765624.
 
13.
Tsuchida AI, Beekhuizen M, Rutgers M, et al. (2012): Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis Res Ther 14: R262.
 
14.
Komatsu N, Okamoto K, Sawa S, et al. (2014): Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20: 62-68.
 
15.
Liton PB, Li G, Luna C, et al. (2009): Cross-talk between TGF-1 and IL-6 in human trabecular meshwork cells. Mol Vis 15: 326-334.
 
16.
Wang T, Sun X, Zhao J, et al. (2015): Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis 74: 1293-1301.
 
17.
Gao Z, Gao Y, Li Z, et al. (2012): Synergy between IL-6 and TGF-beta signaling promotes FOXP3 degradation. Int J Clin Exp Pathol 5: 626-633.
 
18.
Aletaha D, Neogi T, Silman AJ, et al. (2010): 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62: 2569-2581.
 
19.
Gaafar T, Farid R, Raafat H, et al. (2015): The TH17/Treg imbalance in rheumatoid arthritis and relation to disease activity. J Clin Cell Immunol 6: 1000381.
 
20.
Moradi B, Schnatzer P, Hagmann S, et al. (2014): CD4+CD25+/high CD127 low/-regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints – analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood. Arthritis Res Ther 16: R97.
 
21.
Chen R, Tao Y, Qiu K, et al. (2012): Association of circulating Treg cells with disease activity in patients with rheumatoid arthritis. Nan Fang Yi Ke Da Xue Xue Bao 32: 886-889.
 
22.
Ammirati E, Cianflone D, Banfi M, et al. (2010): Circulating CD4+ CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 30: 1832-1841.
 
23.
Liu W, Putnam AL, Xu-Yu Z, et al. (2006): CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203: 1701-1711.
 
24.
Nettenstrom L, Alderson K, Raschke E, et al. (2013): An optimized multi-parameter flow cytometry protocol for human T regulatory cell analysis on fresh and viably frozen cells, correlation with epigenetic analysis, and comparison of cord and adult blood. J Immunol Methods 387: 81-88.
 
25.
Lee HY, Hong YK, Yun HJ, et al. (2008): Altered frequency and migration capacity of CD4+ CD25+ regulatory T cells in systemic lupus erythematosus. Rheumatology 47: 789-794.
 
26.
Li N, Ma T, Han J, et al. (2014): Increased apoptosis induction in CD4+ CD25+ Foxp3+ T cells contributes to enhanced disease activity in patients with rheumatoid arthritis through IL-10 regulation. Eur Rev Med Pharmacol Sci 18: 78-85.
 
27.
van der Geest KS, Smigielska-Czepiel K, Park JA, et al. (2015): SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA. Rheumatology 54: 950-958.
 
28.
Han GM, O’Neil-Andersen NJ, Zurier RB, Lawrence DA. (2008): CD4+CD25 high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol 253: 92-101.
 
29.
Niu Q, Huang Z, Cai B, et al. (2011): Analysis of frequency of peripheral blood CD4+; CD25 (high); Tregs and CD4+; CD25 (low); T cells and expression of PD-1 in SLE and RA patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 27: 23-25.
 
30.
Wan YY, Flavell RA (2007): Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445: 766-770.
 
31.
Hunter CA, Jones SA (2015): IL-6 as a keystone cytokine in health and disease. Nat Immunol 16: 448-457.
 
32.
Ruderman EM (2015): Rheumatoid arthritis: IL-6 inhibition in RA – déjà vu all over again? Nat Rev Rheumatol 11: 321-322.
 
33.
Tekeogˇlu I, Harman H, Sagˇ S, et al. (2016): Levels of serum pentraxin 3, IL-6, fetuin A and insulin in patients with rheumatoid arthritis. Cytokine 83: 171-175.
 
34.
Dkhil AS, Hussain F, Muttar AA (2016): Association between interleukin-6 (IL-6) and thrombocytosis in rheumatoid arthritis patients. Int J PharmTech Res 9: 307-312.
 
35.
Wang W, Shao S, Jiao Z, et al. (2012): The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int 32: 887-893.
 
36.
Chavele KM, Ehrenstein MR (2011): Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett 585: 3603-3610.
 
37.
Gonzalo-Gil E, Galindo-Izquierdo M (2014): Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis. Reumatol Clin 10: 174-179.
 
38.
Pohlers D, Beyer A, Koczan D, et al. (2007): Constitutive upregulation of the transforming growth factor- pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 9: R59.
 
39.
Cheon H, Yu SJ, Yoo D, et al. (2002): Increased expression of pro-inflammatory cytokines and metalloproteinase-1 by TGF-1 in synovial fibroblasts from rheumatoid arthritis and normal individuals. Clin Exp Immunol 127: 547-552.
 
40.
Youn J, Hwang SH, Ryoo ZY, et al. (2002): Metallothionein suppresses collagen-induced arthritis via induction of TGF- and down-regulation of proinflammatory mediators. Clin Exp Immunol 129: 232-239.
 
41.
Olsen NJ, Spurlock CF, Aune TM (2014): Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther 16: R17.
 
42.
Edwards C 3rd, Green JS, Volk HD, et al. (2012): Combined anti-tumor necrosis factor-alpha therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone. Front Immunol 4: 366.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top