CLINICAL IMMUNOLOGY
Association of the polymorphisms of TRAF1 (rs10818488) and TNFAIP3 (rs2230926) with rheumatoid arthritis and systemic lupus erythematosus and their relationship to disease activity among Egyptian patients
 
More details
Hide details
 
Submission date: 2015-08-27
 
 
Final revision date: 2015-10-20
 
 
Acceptance date: 2015-10-21
 
 
Publication date: 2016-07-15
 
 
Cent Eur J Immunol 2016;41(2):165-175
 
KEYWORDS
ABSTRACT
Aim of the study: Recent studies demonstrated the association of tumor necrosis factor α-induced protein 3 (TNFAIP3) (rs2230926) and tumor necrosis factor receptor associated factor 1 (TRAF1) (rs10818488) with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in different populations. We aimed at determining whether they confer susceptibility to SLE and RA in Egyptian population and if there is any relation to disease activity and auto-antibodies profile.
Material and methods: A case-control study involving 105 individuals with RA, 90 with SLE and 75 healthy controls was performed using TaqMan genotyping assay for two SNPs that showed the best evidence of association in the previous Caucasian studies.
Results: We detected significant differences in G allele frequency of TNFAIP3 (rs2230926) with SLE (p = 0.017*) and RA (OR = 2.333; 95% CI: 1.103-4.935, p = 0.023*) and association with RA disease activity (< 0.001). The A allele of TRAF1 was significantly increased in RA compared to controls
(p = 0.049) and with RA activity (p = 0.001), while TRAF1 polymorphism did not exhibit any significant difference in the frequencies of genotypes or alleles in SLE and control (p = 0.280).
Conclusions: TNFAIP3 is a susceptibility gene to SLE and RA in the Egyptian population and is correlated to disease activity and the presence of autoantibodies while TRAF1 polymorphisms increase the risk of RA but not to SLE in Egyptian populations.
REFERENCES (49)
1.
Majithia V, Geraci SA (2007): Rheumatoid arthritis: diagnosis and management. Am J Med 120: 936-939.
 
2.
Gabriel SE, Michaud K (2009): Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther 11: 229.
 
3.
Krishnan S, Chowdhury B, Juang Y-T, Tsokos GC (2007): Overview of the pathogenesis of systemic lupus erythematosus. In: Tsokos GC, Gordon C, Smolen JS, editors. Systemic lupus erythematosus: acompanion to Rheumatology. Mosby Inc; Philadelphia; 55-63.
 
4.
Davidson A, Diamond B (2001): Autoimmune diseases.
 
5.
N Engl J Med 345: 340-350.
 
6.
Suzuki A, Kochi Y, Okada Y, Yamamoto K (2011): Insight from genome-wide association studies in rheumatoid arthritis and multiple sclerosis. FEBS Lett 585: 3627-3632.
 
7.
Harley IT, Kaufman KM, Langefeld CD, et al. (2009): Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 10: 285-290.
 
8.
Coornaert B, Carpentier I, Beyaert R (2009): A20: central gatekeeper in inflammation and immunity. J Biol Chem 284: 8217-8221.
 
9.
Adrianto I, Wen F, Templeton A, et al. (2011): Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet 43: 253-258.
 
10.
Wajant H, Henkler F, Scheurich P (2001): The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 13: 389-400.
 
11.
Sabbagh L, Srokowski CC, Pulle G, et al. (2006): A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc Natl Acad Sci U S A 103: 18703-18708.
 
12.
Kurreeman FA, Goulielmos GN, Alizadeh BZ, et al. (2010): The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69: 696-699.
 
13.
Nishimoto K, Kochi Y, Ikari K, et al. (2010): Association study of TRAF1-C5 polymorphisms with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese. Ann Rheum Dis 69: 368-373.
 
14.
Lee YH, Harley JB, Nath SK (2006): Meta-analysis of TNF-αlpha promoter -308 A/G polymorphism and SLE susceptibility. Eur J Hum Genet 14: 364-371.
 
15.
Neogi T, Aletaha D, Silman AJ, et al. (2010): The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis. Arthritis Rheum 62: 2582-2591.
 
16.
Van der Heijde DM, van t Hof MA, van Riel PL, et al. (1990): Judging disease activity in clinical practice in rheumatoid arthritis: first step in the development of a disease activity score. Ann Rheum Dis 49: 916-920.
 
17.
Petri M, Orbai AM, Alarcon GS, et al. (2012): Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64: 2677-2686.
 
18.
Griffiths B, Mosca M, Gordon C (2005): Assessment of patients with systemic lupus erythematosus and the use of lupus disease activity indices. Best Pract Res Clin Rheumatol 19: 685-708.
 
19.
Masi AT, Aldag JC, Sipes J (2001): Do elevated levels of serum C-reactive protein predict rheumatoid arthritis in men: correlations with pre-RA status and baseline positive rheumatoid factors. J Rheumatol 28: 2359-2361.
 
20.
Thammanichanond D, Kunakorn M, Kitiwanwanich S, et al. (2005): Raising rheumatoid factor cutoff helps distinguish rheumatoid arthritis. Asian Pac J Allergy Immunol 23: 165-168.
 
21.
Suzuki K, Sawada T, Murakami A, et al. (2003): High diagnostic performance of ELISA detection of antibodies to citrullinated antigens in rheumatoid arthritis. Scand J Rheumatol 32: 197-204.
 
22.
QIAamp DNA Blood Mini Kit. Available from: www.qiagen.com.
 
23.
Malkki M, Petersdorf EW (2012): Genotyping of single nucleotide polymorphisms by 5’ nuclease allelic discrimination. Methods Mol Biol 882: 173-182.
 
24.
Shimane K, Kochi Y, Horita T, et al. (2010): The association of a nonsynonymous single-nucleotide polymorphism in TNFAIP3 with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum 62: 574-579.
 
25.
Zhang X, Li W, Jiang L, et al. (2013): The association of single nucleotide polymorphisms in TNFAIP3 with rheumatoid arthritis in the Chinese population. Centr Eur J Immunol 38: 214-220.
 
26.
Musone SL, Taylor KE, Nititham J, et al. (2011): Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun 12: 176-182.
 
27.
Van Gaalen F, Ioan-Facsinay A, Huizinga TW, Toes RE (2005): The devil in the details: the emerging role of anticitrulline autoimmunity in rheumatoid arthritis. J Immunol 175: 5575-5580.
 
28.
Tedesco A, D’Agostino D, Soriente I, et al. (2009): A new strategy for the early diagnosis of rheumatoid arthritis: a combined approach. Autoimmun Rev 8: 233-237.
 
29.
Perdigones N, Lamas JR, Vigo AG, et al. (2009): 6q23 polymorphisms in rheumatoid arthritis Spanish patients. Rheumatology (Oxford) 48: 618-621.
 
30.
Yeh ET (2004): CRP as a mediator of disease. Circulation 109 (21 Suppl 1): II: 11-14.
 
31.
Zervou MI, Sidiropoulos P, Petraki E, et al. (2008): Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum Immunol 69: 567-571.
 
32.
Burton PR, Clayton DG, Cardon LR, et al. (2007): The Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 447: 661-678.
 
33.
Ahmadlou S, Akhiani M, Salimzadeh A, et al. (2014): Lack of Association between Single Nucleotide Polymorphism rs10818488 in TRAF1/C5 Region and Rheumatoid Arthritis in Iranian Population. Iran J Allergy Asthma Immunol 13: 19-25.
 
34.
Kurreeman FA, Padyukov L, Marques RB, et al. (2007): A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 4: e278.
 
35.
Jansen AL, van der Horst-Bruinsma I, van Schaardenburg D, et al. (2011): Rheumatoid factor and antibodies to cyclic citrullinated Peptide differentiate rheumatoid arthritis from undifferentiated polyarthritis in patients with early arthritis. J Rheumatol 29: 2074-2076.
 
36.
Kroot EJ, de Jong BA, van Leeuwen MA, et al. (2000): The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent onset rheumatoid arthritis. Arthritis Rheum 43: 1831-1835.
 
37.
Kamradt T, Schubert D (2005): The role and clinical implications ofG6Pl in experimental models of rheumatoid arthritis. Arthritis Res Ther 7: 20-28.
 
38.
Agrawal S, Misra R, Aggarwal A (2012): Autoantibodies in rheumatoid arthritis: association with severity of disease in established RA. Clin Rheumatol 26: 201-204.
 
39.
Glasnovic M, Bosnjak I, Vcev A, et al. (2007): Anti-citrullinated antibodies, radiological joint damages and their correlations with disease activity score (DAS28). Coil Antropol 31: 345-348.
 
40.
Viatte S, Plant D, Bowes J, et al. (2012): Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann Rheum Dis 71: 1984-1990.
 
41.
Graham RR, Cotsapas C, Davies L, et al. (2008): Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40: 1059-1061.
 
42.
Musone SL, Taylor KE, Lu TT, et al. (2008): Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40: 1062-1064.
 
43.
Han JW, Zheng HF, Cui Y, et al. (2009): Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41: 1234-1237.
 
44.
Cai LQ, Wang ZX, Lu WS, et al. (2010): A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep 37: 389-394.
 
45.
Zhong H, Li XL, Li M, et al. (2011): Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res Ther 13: R186.
 
46.
Kawasaki A, Ito I, Ito S, et al. (2010): Association of TNFAIP3 polymorphism with susceptibility to systemic lupus erythematosus in a Japanese population. J Biomed Biotechnol 2010: 207578.
 
47.
Lodolce JP, Kolodziej LE, Rhee L, et al. (2010): African-derived genetic polymorphisms in TNFAIP3 mediate risk for autoimmunity. J Immunol 184: 7001-7009.
 
48.
Palomino-Morales RJ, Rojas-Villarraga A, Gonzalez CI, et al. (2008): STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun 9: 379-382.
 
49.
Zervou MI, Vazgiourakis VM, Yilmaz N, et al. (2011): TRAF1/C5, eNOS, C1q, but not STAT4 and PTPN22 gene polymorphisms are associated with genetic susceptibility to systemic lupus erythematosus in Turkey. Hum Immunol 72: 1210-1213.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top