EXPERIMENTAL IMMUNOLOGY
In vitro effects of different 8-methoxypsoralen treatment protocols for extracorporeal photopheresis on mononuclear cells
 
More details
Hide details
 
Submission date: 2015-11-23
 
 
Final revision date: 2016-02-26
 
 
Acceptance date: 2016-05-20
 
 
Publication date: 2017-05-08
 
 
Cent Eur J Immunol 2017;42(1):1-9
 
KEYWORDS
ABSTRACT
Extracorporeal photopheresis (ECP) is an important second-line therapy for graft-versus-host disease. A central therapeutic mechanism is the induction of immune tolerance through apoptosis in patient’s leukocytes, caused by ex vivo incubation with 8-methoxypsoralen (8-MOP) and subsequent UVA irradiation.
We hypothesized that different 8-MOP incubation times and an additional 8-MOP removal step could influence the apoptosis kinetics of leukocytes in general and in particular could lead to different apoptotic levels in the leukocyte subpopulations. After 8-MOP/UVA treatment of human leukocytes, cells were cultured and the percentage of annexin V positive cells from several leukocyte subpopulations was determined. Only regulatory T cells (Tregs) were relatively resistant to 8-MOP/UVA induced apoptosis. When cells were incubated for 30 minutes with 8-MOP prior to UVA exposure, higher percentages of annexin V positive cells were detected on day 1 and day 2 after treatment. Removal of 8-MOP after UVA exposure caused no significant changes in the apoptosis kinetics during the 72 h culture period compared with unwashed cells. The results of our in vitro study indicate that it could be possible to adjust the apoptosis kinetics via modulation of the 8-MOP incubation time. In further in vivo studies it should be elucidated to which extent different apoptosis kinetics influence the therapeutic effect of ECP since steady-state apoptosis levels are probably important for establishing a long lasting immune tolerance. Furthermore we found that Tregs, according to their well-known tolerogenic function, are more resistant to apoptosis after 8-MOP/UVA treatment compared to GvHD inducing T cell populations.
REFERENCES (38)
1.
Blazar BR, Murphy WJ, Abedi M (2012): Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12: 443-458.
 
2.
Bluestone JA, Auchincloss H, Nepom GT, et al. (2010): The Immune Tolerance Network at 10 years: tolerance research at the bedside: Nat Rev Immunol 10: 797-803.
 
3.
Merlin E, Paillard C, Rochette E, et al. (2010): Extracorporeal photochemotherapy as second- or first-line therapy of acute GVHD? Bone Marrow Transplant 45: 963-965.
 
4.
Marshall SR (2006): Technology insight: ECP for the treatment of GvHD-can we offer selective immune control without generalized immunosuppression? Nat Clin Pract Oncol 3: 302-314.
 
5.
Suchin KR, Cassin M, Washko R, et al. (1999): Extracorporeal photochemotherapy does not suppress T- or B-cell responses to novel or recall antigens. J Am Acad Dermatol 41: 980-986.
 
6.
Wolf CE, Meyer M, Riggert J (2005): Leukapheresis for the extraction of monocytes and various lymphocyte subpopulations from peripheral blood: product quality and prediction of the yield using different harvest procedures. Vox Sang 88: 249-255.
 
7.
Heshmati F (2003): Mechanisms of action of extracorporeal photochemotherapy. Transfus Apher Sci 29: 61-70.
 
8.
Voss CY, Fry TJ, Coppes MJ, et al. (2010): Extending the horizon for cell-based immunotherapy by understanding the mechanisms of action of photopheresis. Transfus Med Rev 24: 22-32.
 
9.
Durazzo TS, Tigelaar RE, Filler R, et al. (2014): Induction of monocyte-to-dendritic cell maturation by extracorporeal photochemotherapy: initiation via direct platelet signaling. Transfus Apher Sci 50: 370-378.
 
10.
Lamioni A, Parisi F, Isacchi G, et al. (2005): The immunological effects of extracorporeal photopheresis unraveled: induction of tolerogenic dendritic cells in vitro and regulatory T cells in vivo. Transplantation 79: 846-850.
 
11.
Jiang H, Lu Z, Pan S, et al. (2006): Opposite effects of donor apoptotic versus necrotic splenocytes on splenic allograft tolerance. J Surg Res 136: 247-254.
 
12.
Grodzicky T, Elkon KB (2002) Apoptosis: a case where too much or too little can lead to autoimmunity. Mt Sinai J Med 69: 208-219.
 
13.
Hackstein H, Amoros JJ, Bein G, et al. (2014): Successful use of miniphotopheresis for the treatment of graft-versus-host disease. Transfusion 54: 2022-2027.
 
14.
Birge RB, Ucker DS (2008): Innate apoptotic immunity: the calming touch of death. Cell Death Differ 15: 1096-1102.
 
15.
Alcindor T, Gorgun G, Miller KB, et al. (2001): Immunomodulatory effects of extracorporeal photochemotherapy in patients with extensive chronic graft-versus-host disease. Blood 98: 1622-1625.
 
16.
Perfetti P, Carlier P, Strada P, et al. (2008): Extracorporeal photopheresis for the treatment of steroid refractory acute GVHD. Bone Marrow Transplant 42: 609-617.
 
17.
Porto G, Giordano RJ, Marti LC, et al. (2011): Identification of novel immunoregulatory molecules in human thymic regulatory CD4+CD25+ T cells by phage display. PLoS One 6: e21702.
 
18.
Chen X, Subleski JJ, Hamano R, et al. (2010): Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. Eur J Immunol 40: 1099-1106.
 
19.
Ward DM (2011): Extracorporeal photopheresis: how, when, and why. J Clin Apher 26: 276-285.
 
20.
Gatza E, Rogers CE, Clouthier SG, et al. (2008): Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood 112: 1515-1521.
 
21.
Florek M, Sega EI, Leveson-Gower DB, et al. (2014): Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models. Blood 124: 1832-1842.
 
22.
Budde H, Kolb S, Salinas Tejedor L, et al. (2014): Modified extracorporeal photopheresis with cells from a healthy donor for acute graft-versus-host disease in a mouse model. PLoS One 9: e105896.
 
23.
Maeda A, Schwarz A, Bullinger A, et al. (2008): Experimental extracorporeal photopheresis inhibits the sensitization and effector phases of contact hypersensitivity via two mechanisms: generation of IL-10 and induction of regulatory T cells. J Immunol 181: 5956-5962.
 
24.
Apostolou A, Williams RE, Comereski CR (1979): Acute toxicity of micronized 8-Methoxypsoralen in rodents. Drug Chem Toxicol 2: 309-313.
 
25.
Dubertret L, Averbeck D, Zajdela F, Bisagni E, Moustacchi E, Touraine R, Latarjet R (1979): Photochemotherapy (PUVA) of psoriasis using 3-carbethoxypsoralen, a non-carcinogenic compound in mice. Br J Dermatol 101: 379-389.
 
26.
Gasparro FP, Dall’Amico R, Goldminz D, et al. (1989): Molecular aspects of extracorporeal photochemotherapy. Yale J Biol Med 62: 579-593.
 
27.
Bladon J, Taylor PC (2006): Extracorporeal photopheresis: a focus on apoptosis and cytokines. J Dermatol Sci 43: 85-94.
 
28.
Karolak L, Tod M, Leon A, et al. (1992): In vitro kinetics of 8-methoxypsoralen penetration into human lymphoid cells. Photodermatol Photoimmunol Photomed 9: 58-60.
 
29.
Roos WP, Kaina B (2006): DNA damage-induced cell death by apoptosis. Trends Mol Med 12: 440-450.
 
30.
Schmid D, Grabmer C, Streif D, et al. (2015): T-cell death, phosphatidylserine exposure and reduced proliferation rate to validate extracorporeal photochemotherapy. Vox Sang 108: 82-88.
 
31.
Xia CQ, Campbell KA, Clare-Salzler MJ (2009): Extracorporeal photopheresis-induced immune tolerance: a focus on modulation of antigen-presenting cells and induction of regulatory T cells by apoptotic cells. Curr Opin Organ Transplant 14: 338-343.
 
32.
Lorenz K, Rommel K, Mani J, et al. (2015): Modulation of lymphocyte subpopulations by extracorporeal photopheresis in patients with acute graft-versus-host disease or graft rejection. Leuk Lymphoma 56: 671-675.
 
33.
Di Biaso, Di Maio L, Bugarin C, et al. (2009): Regulatory T cells and extracorporeal photochemotherapy: correlation with clinical response and decreased frequency of proinflammatory T cells. Transplantation 87: 1422-1425.
 
34.
Hannani D, Gabert F, Laurin D, et al. (2010): Photochemotherapy induces the apoptosis of monocytes without impairing their function. Transplantation 89: 492-499.
 
35.
Tambur AR, Ortegel JW, Morales A, et al. (2000): Extracorporeal photopheresis induces lymphocyte but not monocyte apoptosis. Transplant Proc 32: 747-748.
 
36.
Cutler C, Kim HT, Bindra B, et al. (2013): Rituximab prophylaxis prevents corticosteroid-requiring chronic GVHD after allogeneic peripheral blood stem cell transplantation: results of a phase 2 trial. Blood 122: 1510-1517.
 
37.
Alousi AM, Uberti J, Ratanatharathorn V (2010): The role of B cell depleting therapy in graft versus host disease after allogeneic hematopoietic cell transplant. Leuk Lymphoma 51: 376-389.
 
38.
Palmer JM, Rajasekaran K, Thakar MS, et al. (2013): Clinical relevance of natural killer cells following hematopoietic stem cell transplantation. J Cancer 4: 25-35.
 
eISSN:1644-4124
ISSN:1426-3912
Journals System - logo
Scroll to top