

Shaping the macrophage landscape in the tumour microenvironment

JACEK TABARKIEWICZ¹, PAULINA NIEDŹWIEDZKA-RYSTWEJ^{2,3}, MARLENA TYNECKA⁴,
ANDRZEJ ELJASZEWICZ⁴

¹Department of Human Immunology, Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland

²Institute of Biology, University of Szczecin, Szczecin, Poland

³Centre for Experimental Immunology and Immunobiology in Infectious Diseases and Cancer, University of Szczecin, Szczecin, Poland

⁴Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, Poland

(*Cent Eur J Immunol* 2025; 50 (3): 233)

Tumour-associated macrophages (TAMs) are key orchestrators of the immune and stromal microenvironment, affecting cancer progression, metastatic ability, and the tissue's inflammatory balance. In this issue of the *Central European Journal of Immunology* (CEJI), Lu *et al.* report that colorectal cancer (CRC)-derived LAMA1 promotes macrophage M2 polarisation by activating the EGFR–AKT–CREB pathway. Their study offers a new mechanistic understanding of how tumour-derived extracellular matrix (ECM) components can influence macrophage function and, in turn, the tumour microenvironment (TME) [1].

While cytokines and soluble mediators have long been recognised as orchestrators of macrophage phenotype, Lu *et al.* expand this understanding by demonstrating that a basement membrane component, namely LAMA1, can serve as a signalling mediator rather than solely as a structural component. Identifying the EGFR–AKT–CREB pathway as an intracellular signalling pathway regulating macrophages enhances our understanding of how tumour cells may indirectly influence immune responses [1].

This research aligns with a broader trend observed in CEJI publications over the past 2 years, where several studies have explored macrophage plasticity and the complex dialogue between the tumour and immune compartments.

For instance, Huang *et al.* demonstrated that exposure to the anaesthetic sevoflurane alters macrophage-like cell polarisation in a cervical-cancer model [2]. Similar findings have been reported for lung adenocarcinoma, where ANKRD22 expression facilitated angiogenesis by skewing macrophage-like cells' activation states [3]. Collectively, these studies, and now the contribution by Lu *et al.*, as well as recently published reports in other journals, emphasise that a single pathway does not govern TAM polarisation but results from the integration of multiple environmental and molecular signals [4, 5]. From a scientific standpoint, the study reinforces a crucial message: macrophages interpret not only cytokine gradients, but also structural and

biochemical cues derived from the ECM [6, 7]. This recognition broadens our understanding of immune regulation within tumours, positioning the ECM as an active participant in shaping immune cell function [8].

Taken together, the work by Lu *et al.* adds a valuable layer to the evolving narrative of macrophage biology in cancers [1]. By uncovering a previously unappreciated ECM-to-macrophage signalling route, this study enriches our mechanistic understanding of tumour–immune cross-talk. It highlights the ongoing need for experimental systems that bridge models with physiological complexity.

References

1. Lu J, Ge C, Yu P, et al. (2025): LAMA1 derived from colorectal cancer promotes M2 polarization in macrophages via activation of the EGFR/AKT/CREB pathway. *Cent Eur J Immunol* 50: 234-247.
2. Huang L, Duan F, Dong X, Zhang Z (2024): The N6-methyladenosine pattern of MAP3K7 mediates the effects of sevoflurane on macrophage M2 polarization and cervical cancer migration and invasion. *Cent Eur J Immunol* 49: 393-403.
3. Zhou L, Ma D, Li X, et al. (2025): Macrophage M2 polarization induced by ANKRD22 in lung adenocarcinoma facilitates tumor angiogenesis. *Cent Eur J Immunol* 50: 38-51.
4. Zhang L, Zhang K, Zhang J, et al. (2021): Loss of fragile site-associated tumor suppressor promotes antitumor immunity via macrophage polarization. *Nat Commun* 12: 4300.
5. Wang Q, Wu Y, Long Y, et al. (2025): AR+TREM2+ macrophage induced pathogenic immunosuppression promotes prostate cancer progression. *Nat Commun* 16: 6964.
6. Ramos RN, Rodriguez C, Hubert M, et al. (2020): CD163+ tumor-associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes. *Clin Transl Immunology* 9: e1108.
7. Im JH, Buzzelli JN, Jones K, et al. (2020): FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. *Nat Commun* 11: 4064.
8. Casanova-Acebes M, Dalla E, Leader AM, et al. (2021): Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. *Nature* 595: 578-584.

Correspondence: Andrzej Eljaszewicz, PhD, Centre of Regenerative Medicine, Medical University of Bialystok, Waszyngtona 15 B, 15-269 Bialystok, Poland, e-mail: ceji@umb.edu.pl