

Deciphering cardiotoxicity in PD-1/PD-L1 inhibitor treatment

JACEK TABARKIEWICZ¹, ELIZA GŁODKOWSKA-MRÓWKA², ANDRZEJ ELJASZEWICZ³

¹Department of Human Immunology, Institute of Medical Sciences, University of Rzeszow, Rzeszow, Poland

²Department of Immunohematology and Transfusion Medicine, Institute of Haematology and Transfusion Medicine, Warsaw, Poland

³Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, Poland

(Cent Eur J Immunol 2025; 50 (1): 2)

Inhibitors targeting the PD-1/PD-L1 immune checkpoint axis have revolutionized cancer treatment, offering unprecedented survival benefits across various malignancies [1]. However, the growing body of evidence linking these therapies to immune-related adverse events (irAEs), particularly cardiotoxicity, demands closer scrutiny [2, 3]. In this issue of the *Central European Journal of Immunology*, Fu *et al.* present compelling experimental findings that shed new light on the mechanisms underpinning PD-1/PD-L1 inhibitor-induced cardiotoxicity [1].

Using a murine model, the authors demonstrate that cardiotoxicity induced by BMS-1, a PD-1/PD-L1 inhibitor, is tightly regulated by macrophage polarization and the SOCS3/JAK/STAT3 signalling cascade. The study provides critical insights into how innate immune cells, namely M1/M2-polarized macrophages, contribute to myocardial damage under immune checkpoint blockade. Moreover, the identification of the SOCS3 axis as a potential modulator of this process opens new therapeutic avenues for mitigating irAEs without compromising anti-tumour immunity.

This work complements and extends recent studies in CEJI that highlight the immunological complexity of PD-1/PD-L1-directed therapies. For example, Zhao *et al.* [5] reported heterogeneous patterns of disease progression in hepatocellular carcinoma patients undergoing combination therapies, suggesting that immune modulation in these contexts may not be limited to tumour cells alone. Similarly, Zeng *et al.* [6] demonstrated that PD-L1 expression and tumour-infiltrating lymphocyte profiles differ between primary and metastatic breast tumours, further emphasizing the spatial and temporal diversity of immune responses under checkpoint blockade.

Taken together, these studies underscore a crucial message: while PD-1/PD-L1 inhibitors offer clinical benefit, their broader immunological impact remains under active investigation. The work of Fu *et al.* makes a timely and significant contribution to this dialogue, calling for integrative approaches that couple therapeutic efficacy with immune safety. As the field moves toward increasingly personalised immuno-oncology strategies, mechanistic

insights such as those provided here are indispensable in guiding both clinical practice and translational research.

References

1. Fu J, Wang G, Zeng L, et al. (2025): PD-1/PD-L1 inhibitor treatment associated with cardiotoxicity regulated by macrophage polarization and SOCS3/JAK/STAT3 signaling pathway. *Cent Eur J Immunol* 50: 24-37.
2. Shurin MR, Umansky V (2022): Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy. *J Clin Invest* 132: e159473.
3. Naidoo J, Page DB, Li BT, et al. (2015): Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. *Ann Oncol* 26: 2375-2391.
4. Varricchi G, Galdiero MR, Mercurio V, et al. (2018): Pharmacovigilating cardiotoxicity of immune checkpoint inhibitors. *Lancet Oncol* 19: 1545-1546.
5. Zhao Y, Wu D, Yao Q, et al. (2024): Progression patterns in patients with advanced hepatocellular carcinoma treated with local therapy, targeted drugs, and PD-1/PD-L1 inhibitors. *Cent Eur J Immunol* 49: 147-154.
6. Zeng D, Li Q, Wang X, et al. (2025): Comparative analysis of PD-L1 expression and tumor-infiltrating lymphocytes between primary breast cancer and matched metastatic lesions: implications for immunotherapy. *Cent Eur J Immunol* 50. doi: 10.5114/ceji.2025.149541

Correspondence: Andrzej Eljaszewicz, PhD, Centre of Regenerative Medicine, Medical University of Bialystok, Waszyngtona 15 B, 15-269 Bialystok, Poland, e-mail: ceji@umb.edu.pl