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Abstract

Introduction: Dermatomyositis (DM) is the most prevalent disease among myositis patients. The im-
mune response is crucial in DM development. Bioinformatics research on immune-related genes in DM 
is limited. This study attempted to construct a diagnostic model and investigate immune characteristics 
of immune-related differentially expressed genes (DEGs), which could aid in DM diagnosis.

Material and methods: GSE46239 and GSE39454 datasets were from the GEO database, and batch 
effects were eliminated for use as the DM training set. DEG were identified and enrichment analysis 
was conducted between DM and normal samples. Intersection of DEGs and immune-related genes 
yielded immune-related DEGs, which were utilized to generate a PPI network. The diagnostic model 
was built by the LASSO method. The diagnostic model and effectiveness of model genes were evaluated 
through GSE143323. The correlation between immune cell infiltration in DM and diagnostic genes was 
analyzed. Finally, expression levels of HLA genes in DM and their correlation with diagnostic genes 
were examined.

Results: A total of 350 DEGs were identified. Seventy-one immune-related DEGs were screened. 
LASSO regression identified 5 immune-related DEGs (ACKR1, DHX58, IRF7, ISG15, and PSMB8) for 
constructing the DM diagnostic model. The model showed good effectiveness in training and validation 
sets (AUC of 0.99 and 0.958, respectively), and 5 immune-related DEGs also exhibited good effective-
ness (AUC > 0.784). Diagnostic genes in DM were associated with M1 macrophages, M2 macrophages, 
resting dendritic cells, and certain HLA genes.

Conclusions: We constructed a DM diagnostic model using ACKR1, DHX58, IRF7, ISG15, and 
PSMB8, which were closely related to immune cells and HLA. This model could contribute to research 
in DM diagnosis.
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Introduction
Muscle weakness and skin rashes are the main symp-

toms of dermatomyositis (DM), an uncommon autoim-
mune disease that predominantly affects the skin and mus-
cles. Additionally, some individuals could have edema or 
joint pain [1]. Dermatomyositis is an idiopathic inflamma-
tory myopathy [2, 3]. Among all myositis patients, DM has 
the greatest incidence [4]. Furthermore, compared to other 
types of myositis, DM patients are more likely to develop 
malignancies [5]. Environmental factors [6] and certain 
medications [7] are possible risk factors. Additionally, in-

dividuals with specific HLA types are more susceptible to 
DM [8]. Immunological factors such as immune cell infil-
tration [9], humoral immune response [10], autoantigens 
and autoantibodies [11], and cytokines [12], are also crit-
ical in DM pathogenesis. Therefore, analyzing expression 
of immune-related genes provides a potential approach to 
gain deeper insights into the mechanisms underlying DM 
pathogenesis. Moreover, it can offer clues and ideas for 
exploring potential therapeutic targets.

Numerous disorders have been studied using microar-
ray technology in medicine [13]. It is a high-throughput 
gene expression profiling technique that identifies dis-
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ease-associated target genes [14], possible molecular 
mechanisms [15], diagnosis, and prognosis [16]. For ex-
ample, Peng et al. [17] conducted transcriptomic anal-
ysis of long non-coding RNAs in DM using microarray 
analysis and outlined aberrant lncRNAs in DM. Xie et al. 
[18] identified 20 differentially expressed genes (DEGs) 
linked to DM using cDNA microarray. Xiao et al. [19] 
discovered 10 genes as possible biomarkers for diagnosing 
DM through microarray and bioinformatics analysis. As 
DM is an autoimmune myopathy, immune response plays 
a significant role in its occurrence [20], but there is lim-
ited research on immune-related genes in DM. Therefore, 
the combination of microarray and bioinformatics analysis 
can be utilized to explore immune-related genes closely 
associated with DM development and evaluate the effec-
tiveness of constructing a diagnostic model based on them.

Thus, we obtained microarray datasets GSE46239 and 
GSE39454 from the GEO database as the DM training set 
after removing batch effects. DEGs were identified and 
enrichment analysis was conducted. Intersection of DEGs 
with immune-related genes yielded immune DEGs, and 
a PPI network was built. Subsequently, a diagnostic model 
was built by LASSO, and validation was performed using 
the microarray dataset GSE143323. CIBERSORT analysis 
was utilized to investigate immune cell infiltration in DM, 
and correlation between diagnostic genes and immune 
cells was analyzed using the corrplot R package. Finally, 
levels of HLA genes in DM and their correlation with diag-
nostic genes were assayed. The findings laid a foundation 
for clinical diagnostic research on DM.

Material and methods

Data collection

GSE46239, GSE39454, and GSE143323 datasets were 
obtained from GEO (https://www.ncbi.nlm.nih.gov/). 
GSE46239 consisted of 5 normal samples and 8 DM sam-
ples, GSE39454 consisted of 4 normal samples and 48 DM 
samples, and GSE143323 consisted of 20 normal samples 
and 39 DM samples. Batch effects of datasets GSE46239 
and GSE39454 were removed, and the datasets were 
merged into one training set, while GSE143323 served as 
the validation set.

DEG analysis

The R package SVA [21] was utilized to merge and 
batch-correct the GSE46239 and GSE39454 datasets. Prin-
cipal component analysis (PCA) was performed to assess 
correction results. The standardized gene expression ma-
trix file was downloaded, and the limma R package was 
used to analyze DEGs between DM and normal samples. 
The threshold for DEGs was set as |logFC| > 0.585 and 
p-value < 0.05.

KEGG and GO enrichment analyses

The clusterProfiler package was used to perform GO 
analysis, including biological processes, cellular compo-
nents, and molecular functions, as well as KEGG pathway 
enrichment analysis for the DEGs between DM and normal 
samples. A significance threshold of p < 0.05 was applied.

Immune-related DEGs and PPI network analysis

Genes associated with immunity were acquired from 
immPort (https://www.immport.org/shared/home). The in-
tersection of immune-related genes and DEGs resulted in 
immune-related DEGs. A PPI network of immune-related 
DEGs was built through STRING (https://string-db.org/), 
with a confidence score > 0.9.

Construction and validation of the diagnostic 
model based on immune-related DEGs

The LASSO model was built using the glmnet R 
package according to gene expression data of immune-re-
lated DEGs. The minimum lambda value obtained from 
the LASSO model was applied as a reference to deter-
mine optimal variables. Logistic regression analysis was 
performed using the genes from the LASSO model, and 
the diagnostic model index was calculated using the fol-
lowing formula:

Index = ExpGene1 * Coef1 + ExpGene2 

* Coef2 + ExpGene3 * Coef3 + ...  
+ ExpGeneN * CoefN

where ExpGene refers to gene expression and Coef 
represents the regression coefficient of the gene. Addition-
ally, the pROC R package was used to generate a ROC 
curve to test the stability and sensitivity of the LASSO 
model. The effectiveness of the diagnostic model and 
candidate diagnostic genes was further validated using 
the GSE143323 dataset.

Correlation of immune cell infiltration  
with diagnostic markers

CIBERSORT, a deconvolution algorithm, was used to 
quantify immune cell infiltration (22 different cell types) 
in the gene expression profiles of DM. Differences in im-
mune cell infiltration between DM and normal samples 
were calculated by CIBERSORT, and visualization was 
performed with the ggplot2 R package. Correlation analy-
sis between infiltrating immune cells and diagnostic mark-
ers was conducted using the corrplot R package.

HLA gene expression evaluation and its 
correlation with diagnostic markers

The levels of HLA genes in DM and normal samples 
were analyzed, and box plots visualizing the results were 
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drawn with the ggplot2 R package. Pearson correlation 
analysis was employed to assess the correlation between 
diagnostic markers and HLA genes, and visualization was 
performed with the ggplot2 R package.

Blood sample collection

Blood samples were collected from 6 DM patients and 
6 healthy volunteers. All DM patients met the diagnostic 
criteria of Bohan and Peter and were over 18 years old. 
Patients with other concurrent autoimmune diseases were 
excluded. Written informed consent was obtained from all 
participating patients and healthy volunteers. This study 
was approved by the Ethics Committee of Sanming First 
Hospital Affiliated to Fujian Medical University. Venous 
blood (10 ml) of patients and volunteers was collected, and 
serum was collected after centrifugation.

qRT-PCR

Total RNA was extracted from serum using the TRIzol 
reagent (Invitrogen, USA) according to the manufacturer’s 
instructions. Then, the RNA was reverse transcribed into 
cDNA using the Takara kit (Dalian, China). Finally, qRT-
PCR was performed in the ABI Prism 7900HT system 
(Thermo Fisher Scientific, USA) using SYBR Green pre-
mix (Bio-Rad Laboratories, Hercules, CA, U.S.). GAPDH 
served as the internal parameter. The primer sequence is 
shown in Table 1.

Statistical analysis

All data were expressed as mean ± standard deviation 
(SD), and statistical analysis was performed using Graph-
Pad Prism. All experiments were repeated three times.  
P < 0.05 was considered statistically significant.

Results

Analysis of DEGs and functional enrichment 
analysis

First, we used the R package SVA to merge GSE46239 
and GSE39454 datasets from the GEO database and per-
formed batch effect correction. The PCA analysis demon-

strated the successful removal of batch effects (Fig. 1A, B). 
Subsequently, we combined these two datasets into one 
training set. DEGs between DM and normal samples were 
identified using a threshold of |LogFC| > 0.585 and ad-
justed p-value < 0.05, resulting in a total of 350 DEGs  
(318 downregulated and 32 upregulated) (Supplementary 
Table 1, Fig. 1C).

GO analysis presented enrichment of DEGs in biologi-
cal processes related to response to virus, collagen-contain-
ing extracellular matrix, and double-stranded RNA binding 
(Fig. 1D). KEGG analysis exhibited enrichment of DEGs 
in pathways such as Coronavirus disease – COVID-19, 
Influenza A, NOD-like receptor signaling pathway, and 
Toll-like receptor signaling pathway (Fig. 1E). These data 
suggested a close association between DM occurrence and 
viral response, immune-associated biological processes, 
and metabolic pathways.

Generation and validation of the diagnostic 
model

A total of 1793 immune-related genes were download-
ed from immPort (https://www.immport.org/shared/home) 
(Supplementary Table 2). By intersecting these genes 
with the DEGs, we identified 71 immune-related DEGs  
(Fig. 2A). Furthermore, we established a PPI network for 
71 immune-related DEGs through STRING, with a con-
fidence score > 0.9. The resulting network consisted of  
43 nodes and 150 edges (Fig. 2B).

We incorporated immune-related DEGs into LASSO 
regression to generate a diagnostic model for distinguish-
ing DM samples from normal samples. The minimum 
lambda value was used as a reference to determine opti-
mal variables to include in the model. Finally, ACKR1, 
DHX58, IRF7, ISG15, and PSMB8 were selected as 
key genes to build the model (Fig. 2C, D). We comput-
ed the index for each sample using the LASSO model as 
follows:

Index = ACKR1 * 1.65 – DHX58 * 0.17  
– IRF7 * 0.73 + ISG15 *1.21 + PSMB8 * 0.71

The model accuracy was assessed using ROC curve 
analysis, and an AUC of 0.99 was obtained in training 
set (Fig. 2E). To test diagnostic performance, we used 

Table 1. Primer sequences

Gene Forward (5′ – 3′) Reverse (5′ – 3′)

ACKR1 ATGGCCTCCTCTGGGTATGT CAACAGCAACAGCTTGGACC

DHX58 GCAAGGCGCAGTTTCAGTTT AGTAGGTAGGTCTGCCCAGG

IRF7 AGCTGTGCTGGCGAGAAG CCGGAATTCCACCAGCTCTT

ISG15 GTGGACAAATGCGACGAACC ATTTCCGGCCCTTGATCCTG

PSMB8 TAGGATGGACCCCGTGGAAA ATGCTGGAACTTGAAGGCGA

GAPDH GACAGTCAGCCGCATCTTCT GCGCCCAATACGACCAAATC
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Fig. 1. Analysis of differentially expressed genes (DEGs) 
between dermatomyositis (DM) and normal samples. 
A) PCA before batch correction of GSE46239 and 
GSE39454. B) PCA after batch correction of GSE46239 
and GSE39454. C) Volcano plot of DEGs between DM 
and normal samples. 
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the GSE143323 dataset as a validation set and found an 
AUC of 0.958 in the validation set (Fig. 2F), indicating 
a strong diagnostic ability. We analyzed diagnostic perfor-
mance of model genes in the training and validation sets. 
In the training set, ACKR1, DHX58, IRF7, ISG15, and 
PSMB8 had AUC values of 0.872, 0.976, 0.981, 0.969, 
and 0.96, respectively (Fig. 2G). In the validation set, AUC 
values for ACKR1, DHX58, IRF7, ISG15, and PSMB8 
were 0.784, 0.825, 0.804, 0.94, and 0.901, respectively 
(Fig. 2H). These findings indicated that ACKR1, DHX58, 
IRF7, ISG15, and PSMB8 also had high diagnostic value.

Furthermore, the  expression levels of ACKR1, 
DHX58, IRF7, ISG15, and PSMB8 in DM were prelim-
inarily analyzed in the training set. The results showed 
that these 5 genes were significantly overexpressed in DM  
(p < 0.05, Fig. 3A). We verified the gene expression lev-
els of the model by collecting serum samples from DM 
patients and healthy volunteers. The results showed that, 
compared with the normal group, the expression levels 
of ACKR1, DHX58, IRF7, ISG15, and PSMB8 in DM 
patients were significantly higher (p < 0.05, Fig. 3B).

Correlation analysis of immune cell infiltration 
and HLA genes with diagnostic genes

Proportions of immune cell infiltration in DM and 
normal tissues were calculated using the CIBERSORT 
algorithm. The results showed a significantly higher infil-
tration degree of M1 and M2 macrophages in DM samples 
compared to the control group. Conversely, the infiltration 
degree of plasma cells, regulatory T cells (Tregs), and rest-
ing dendritic cells was higher in normal samples than in 
DM samples (Fig. 4A). Correlations between diagnostic 
genes and differentially infiltrating immune cells were 
analyzed. ACKR1 was positively correlated with resting 
dendritic cells and M2 macrophages, while it was nega-
tively correlated with M1 macrophages. DHX58, IRF7, 
ISG15, and PSMB8 were positively correlated with both 
M1 and M2 macrophages, and negatively correlated with 
resting dendritic cells (Fig. 4B). Furthermore, analysis 
of HLA expression in DM and normal tissues revealed 
significantly upregulated expression of HLA-E, HLA-C, 
HLA-J, HLA-A, HLA-B, HLA-F, HLA-G, HLA-DMA, 
HLA-DOB, HLA-DPB1, HLA-DRA, HLA-DRB6, HLA-
DMB, and HLA-DPA1 in DM samples. These HLA genes 
were positively correlated with DHX58, IRF7, ISG15, and 
PSMB8, indicating a positive association (Fig. 4C, D).

Discussion

Dermatomyositis can cause muscle weakness, skin 
damage, and multi-organ complications [1]. Current re-
search indicates that the interferon type 1 (IFN-1)-induced 
immune response plays a pivotal role in DM pathogenesis 
[22, 23]. Some studies have explored diagnostic biomark-
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Fig. 1. Cont. D) GO enrichmzent analysis based on DEGs. E) KEGG enrichment analysis based on DEGs
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Fig. 2. Construction and validation of the diagnostic mod-
el. A) Upset plot showing the intersection between im-
mune genes and differentially expressed genes (DEGs). 
B) PPI network of immune-related DEGs. C) Coefficient 
distribution plot of immune-related DEGs. D) LASSO 
coefficient spectrum of immune-related DEGs. E) ROC 
curve analysis of the diagnostic model in the training set 
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Fig. 2. Cont. F) ROC curve analysis of the diagnostic model in the validation set. G) ROC curve analysis of model genes 
in the training set 
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ers using bioinformatics techniques and gene expression 
profiling [18, 24]. However, there is limited research on di-
agnostic genes related to immune-associated genes in DM. 
We applied the LASSO algorithm to establish a diagnostic 
model of key genes and evaluated its diagnostic efficacy 
using ROC curves. We assessed the association of immune 

cell infiltration and HLA genes with diagnostic genes. Our 
study provides a foundation for diagnosis of DM according 
to the diagnostic model of immune-related genes.

By merging two DM-related GEO datasets, we identi-
fied 350 DEGs. Enrichment analysis demonstrated enrich-
ment of DEGs in viral response, immune-related (toll-like 
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Fig. 3. Prediction and validation of model 
gene expression levels. A) Prediction of 
the difference in expression of model 
genes between dermatomyositis (DM) pa-
tients and normal group in the training set. 
B) qRT-PCR was used to verify the ex-
pression level of model genes. *p < 0.05,  
**p < 0.01, ***p < 0.001
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Fig. 4. Correlation analysis of immune cell infiltration and 
HLA genes with diagnostic genes. A) Boxplot showing 
differential infiltration of 22 immune cells. B) Correlation 
between diagnostic genes and immune cells. *p < 0.05, 
**p < 0.01, ***p < 0.001, ns p > 0.05
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Fig. 4. Cont. C) Boxplot showing differential expression of HLA genes. D) Correlation between diagnostic genes and 
HLA genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns p > 0.05
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receptor) biological processes, and metabolic pathways. 
Numerous investigations have identified associations 
of viral infections with DM, such as the COVID-19 virus 
[25]. It has also been found that there are significant IFN-1 
signatures in muscles, blood, and skin of DM patients [22], 
and IFN-1 production is primarily mediated by the TLR 
pathway [26]. Dermatomyositis patients exhibit enhanced 
expression of TLR2 and TLR4 in monocyte subsets, which 
is associated with disease activity and unique clinical fea-
tures, including dysphagia, interstitial lung disease (ILD), 
vasculopathy, and pro-inflammatory cytokines [27]. These 
immunological characteristics may serve as potential diag-
nostic tools and novel biomarkers of disease activity in DM.

The interpretation of the pathogenesis of DM is a hot 
topic of research. For instance, in the study conducted by 
Aljabban et al. [28], they primarily analyzed the path-
ways and genes involved in DM regulation and identified 

several upregulated genes belonging to the TRIM family 
in DM samples. In contrast, this study primarily focuses 
on constructing a diagnostic model for DM with the aim 
of providing guidance for its clinical diagnosis. We used 
LASSO and ROC curves to identify and validate ACKR1, 
DHX58, IRF7, ISG15, and PSMB8 as potential diagnostic 
biomarkers. Previous studies have shown that ACKR1 can 
serve as a diagnostic biomarker for cervical cancer [29]. 
DHX58 can enhance osteogenic differentiation of osteo-
blasts via the Wnt/β-catenin pathway [30]. IRF7 may be 
key in inflammatory responses and is a potential target for 
DM therapy [31]. ISG15 is a ubiquitin-like modifier, and 
it is substantially elevated in DM compared to non-DM 
samples and binds to proteins in DM with perifascicular 
atrophy [32]. PSMB8 is the 20S proteasome subunit β8, 
and mutations in PSMB8 are associated with systemic au-
toimmune inflammatory diseases, including DM [33]. In 
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our study, ACKR1, DHX58, IRF7, ISG15, PSMB8, and 
the constructed diagnostic model all showed good diagnos-
tic performance. In summary, these diagnostic biomarkers 
can be used to predict the progression and prognosis of DM. 
Additionally, based on these biomarkers, new treatment 
approaches or drugs can be developed to improve the prog-
nosis and quality of life for patients. However, the functions 
and molecular regulatory mechanisms of these genes in DM 
are still elusive and require further research.

The extent of immune cell infiltration can serve as an 
important indicator for predicting patient prognosis. In our 
study, we found that M1 and M2 macrophages were up-
regulated in DM, while plasma cells, Tregs, and resting 
dendritic cells were downregulated. Studies have shown 
that macrophage infiltration is elevated in DM compared 
to normal samples and is closely related to the severity 
of the disease [34]. Another study revealed that M1 and 
M2 macrophages are significantly upregulated in DM, 
while plasma cells and Tregs are significantly downregu-
lated, which is congruous with our research findings [35]. 
Macrophage-secreted cytokines may be implicated in DM 
[36]. Hence, macrophage dysregulation may be another 
pathogenic mechanism of DM. Furthermore, immunoglob-
ulin deposits in muscle tissue have been demonstrated in 
idiopathic inflammatory myopathies, suggesting the in-
volvement of plasma cells in muscle inflammation [37]. 
Treg cells are a subpopulation of CD4+ T cells that are 
crucial to the anti-inflammatory response in skeletal mus-
cle and skin, and an imbalance between Th17 and Treg is 
linked to DM [38-40]. Additionally, we found that most 
HLA genes were highly expressed in DM samples, which 
is congruous with the findings of Gao et al. [8], who re-
ported that individuals with specific HLA types were more 
susceptible to DM. Therefore, it is evident that the dynam-
ic changes in immune cells are crucial indicators of dis-
ease severity. By assessing the infiltration of immune cells, 
healthcare professionals can evaluate the patient’s condi-
tion and develop individualized treatment plans.

Our study has some limitations. Firstly, although 
the diagnostic model we constructed is clinically signifi-
cant, further validation is needed by recruiting patients to 
provide DM samples. Secondly, we only proposed a cor-
relation between immune cell infiltration and diagnostic 
genes, and mechanisms by which genes affect immune 
cells need to be investigated through experimental design. 
Finally, although we have experimentally verified the ex-
pression level of diagnostic genes, further experimental 
investigation of the mechanism is needed.
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