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Abstract

Introduction: Modulating dendritic cells (DCs; inhibiting maturation and antigen-presenting ca-
pacity) potentially promote immune tolerance to the benefit of allografts. In this study, we aimed to
elucidate the impact of miR-155 on DC maturation and allograft rejection.

Material and methods: Donor monkey bone marrow-derived dendritic cells (BMDCs) were trans-
duced with anti-miR-155 lentivirus to inhibit miR-155 expression, and the T cell phenotype and function
of DC™155 ypon lipopolysaccharide (LPS) stimulation were evaluated. In vivo, inDC, imDC™"N, and
imDC™ 153 were injected into recipient monkeys before skin transplantation. The survival times of skin
allografts were recorded and the proportions of T cell subsets in spleen and secretion levels of cytokines
in serum were measured. SOCS1/JAK/STAT pathway expression was also examined.

Results: miR-155 level increased during the maturation of dendritic cells. Inhibition of miR-155
significantly attenuated LPS-induced DC maturation. imnDC™1>> promoted the differentiation of regula-
tory T cells (Tregs) and augmented the secretion of immunosuppressive cytokines. In vivo, subcutaneous
injection of imDC*"'3 prolonged recipient monkey skin allograft survival times and attenuated immune
rejection. An increase in the proportion of Treg cells and their secreted cytokines in serum was observed
in the imDC™ 155 group. Mechanistic insights suggest that miR-155 likely regulates the SOCSI-JAK/

STAT pathway.

Conclusions: Suppression of miR-155 has the potential to inhibit DC maturation, affects the dif-
ferentiation of T cell subsets, and prolongs skin allograft survival, which could serve as a promising
therapeutic strategy for managing allograft rejection.

Key words: immune tolerance, dendritic cell maturation, miR-155, Treg differentiation, anti-in-

flammatory cytokines.

Introduction

Immunologic rejection poses a significant challenge in
allograft transplantation. Mature dendritic cells (mDCs),
which elicit immune responses, are implicated in potent
immunologic rejection processes. Consequently, the pres-
ervation of immunological tolerance within dendritic
cells (DCs) assumes paramount importance in the context
of organ transplantation. Tolerogenic DCs, characterized
by an immature phenotype and limited effector T cell
stimulation capacity, hold promise in inducing regulatory
T-cells (Tregs) and mitigating rejection [1, 2]. In vivo stud-
ies demonstrated that immature dendritic cells (imDCs),
sourced from the donor or recipient, laden with donor-spe-
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cific antigens, could induce immune tolerance, enhancing
post-transplant survival of the organ [3, 4]. Accumulated
evidence showed that imDCs or gene-modified DCs could
induce immunological tolerance [5], thereby enhancing
the success rates of organ transplantation, including kid-
neys, livers, and hearts [6-8]. However, the imDCs are
susceptible to maturation, especially in inflammatory en-
vironments, risking rejection [9]. Therefore, understanding
the molecular mechanism driving imDCs to mDC transi-
tion and maintaining tolerogenicity is crucial for transplan-
tation success.

Numerous molecules have been identified to play piv-
otal roles in the differentiation, maturation, and functional-
ity of DCs [10]. MicroRNAs (miRNAs), a class of crucial
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cellular regulators, have the capacity to modulate gene ex-
pression, thereby influencing cellular fate and function [11,
12]. Several miRNAs, including miR-146a, miR-132, and
miR-155, have been linked to DC development and func-
tion [13]. Notably, miR-155 is closely related to cellular
immune function and plays a significant regulatory role in
processes such as dendritic cell, B cell, and T cell activa-
tion. miR-155 is expressed in activated B cells, T cells, and
macrophages [14]. For instance, Thai et al. found that in
a miR-155 knockout mouse model, T cells shifted toward
a Th2 phenotype, and Th2 cytokine expression increased
[15]. Upregulation of miR-155 also appears to be a deci-
sive feature of DC maturation: increased miR-155 expres-
sion was observed in multiple subsets of mouse and hu-
man DCs in response to various TLR ligands, interferon o
(IFN-a), and tumor necrosis factor o (TNF-a) [16, 17].
Remarkably, the degree of change in miR-155 expression
during DC maturation is substantial, with a remarkable in-
crease ranging from 50- to 130-fold in lipopolysaccharide
(LPS)-treated DCs [18]. Importantly, miR-155 not only
serves as a hallmark of DC maturation but also emerg-
es as a critical determinant of mDC functionality. mDCs
deficient in miR-155 exhibit an impaired ability to effec-
tively activate T cells [19]. Despite the role of miR-155
in the immune response to various diseases, the function
of miR-155 in monkey DCs remains elusive.

In this study, we aimed to: 1) develop imDC155 to
assess miR-155’s impact on DC maturation and apoptosis;
2) investigate the effect of imDC*'5 on the differentia-
tion of T cell subsets in a rhesus monkey immune tolerance
model and in vitro T cell co-culture model; and 3) eluci-
date the mechanism underlying imDC-155 action.

Material and methods

Animals

Rhesus monkeys were purchased from the Experi-
mental Animal Center of Kunming Institute of Zoology,
Chinese Academy of Sciences (production license num-
ber: SCXK (Dian) K2013-0012; quality certificate: yes;
breeding method: long-term breeding in Huahongdong
Park, Kunming Institute of Zoology, Chinese Academy
of Sciences). The monkey farm is especially administered
by the animal center, and the animals are raised in single
cages. The raising method is conventional. The animal ex-
periments were approved by the ethics committee follow-
ing review by the Institutional Animal Care and Use Com-
mittee of Kunming Institute of Zoology, Chinese Academy
of Sciences (IACUC number: IACUC20034). The animal
outcome was rehabilitation treatment, as the animal exper-
iment was a small survival operation and did not lead to
the death of experimental animals.

Extraction and culture of imDCs from bone
marrow

T cells and DCs were isolated from the bone marrow
of rhesus monkeys and purified by magnetic bead-based
cell sorting (Miltenyi Biotec, Bergisch Gladbach, Germa-
ny) following the protocol of the Zheng et al. study [20].
CD34* cells then were separately cultured in RPMI 1640
medium (Thermo Fisher Technology Co., Ltd., Shanghai,
China) containing 10% fetal bovine serum (Thermo Fisher
Technology Co., Ltd., Shanghai, China) and 1% penicil-
lin/streptomycin with 20 ng/ml GM-CSF (PeproTech) and
10 ng/ml IL-4 (PeproTech) at 37°C with 5% CO,. On day 6
of cell culture, the purified immature DCs were then plat-
ed at a density of 1 x 10° cells/ml in six-well cell culture
plates and infected with anti-miR-155 lentivirus (sequence:
ACCCCTATCACGATTAGCATTAA), negative control,
or SOCS1 short interfering RNA (siRNA) (50 nmol/l;
GenePharma, China) at a multiplicity of infection (MOI)
of 1:300 for 48 h in serum-free RPMI 1640. mDCs were
generated by stimulating imDCs with lipopolysaccharide
(LPS; 100 ng/ml; Sigma) for 48 h to induce maturation.
The morphological characteristics of the cells were ob-
served by light microscopy. On the 9" day of culture,
the cells were collected to observe their ultrastructure by
electron microscopy, and the cellular immune phenotype
and apoptosis were identified by flow cytometry.

Flow cytometry analysis for phenotypic
identification of DCs and Tregs

For DCs, the DC suspensions of each group were
collected and centrifuged at 1800 rpm for 5 min at room
temperature. The supernatant was discarded, and the cells
were washed twice with 150 ul of phosphate-buffered saline
(PBS). The cell concentration was adjusted to 5 x 10%/ml.
Then, 0.5 ul each of PE-labeled monoclonal anti-bodies
CD80, CD83, CD1a, and MHC-II (BD Pharmingen, MA,
USA) and the isotype control were added, mixed well, and
incubated in a refrigerator at 4°C in the dark for 20 min.

For Tregs, cells were stained with FITC-anti-CD4
and PerCP-Cy5.5-anti-CD25, followed by APC-anti-
Foxp3 staining buffer (all from eBioscience) according to
the manufacturer’s instructions. The stained cells were an-
alyzed using the FACSCanto II system (BD Biosciences),
and the data were analyzed using FlowJo software.

Apoptosis assays

Cells were harvested at the indicated time points,
washed, labeled with Annexin V for 30 minutes on ice,
and subsequently stained with 7-AAD. Annexin V/7-AAD
staining was analyzed by flow cytometry. Sub-GO analysis
of cell apoptosis was also used. Briefly, cells were washed
with 1 mM PBS and fixed with 90% ethanol for at least
30 minutes at —20°C. The cells were then washed, and
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cellular DNA was stained with RNase (50 pg/ml, Sigma-
Aldrich) and 7-AAD (10 pg/ml) for 45 minutes at room
temperature. Fluorescence intensity was quantified by flow
cytometry.

ELISA assay

The contents of interleukin (IL)-2, IL-4, IL-10, and
interferon y (IFN-y) in the cell supernatant and serum
were detected according to the instructions of the ELISA
kit (NeoBioscience, China). A standard curve was drawn
through the standard, and then the contents of IL-2, IL-4,
IL-10, and IFN-y in the sample were calculated according
to the OD value of the sample.

Mixed lymphocyte reaction (MLR) assay

DC#NC and DC*-135 were stimulated with LPS for
48 h, incubated with mitomycin C for 2 h at 37°C, and
washed three times with PBS. 15 ml of peripheral blood
T cells, harvested from rhesus monkeys, were inoculated
per well in a 12-well plate, and IL-2 and RPMI 1640 medi-
um containing 10% FBS were added for complete culture.
The pretreated DCs were co-cultured with 5 x 10° T cells in
96-well culture plates at ratios of 1 : 1, 1: 10, 1:20, 1: 50,
and 1 : 100 for 72 h. Untreated T cells and RPMI-1640
with 10% FBS culture medium served as negative and
blank controls, respectively. Then, these co-cultures were
incubated with 10 uM BrdU for 24 h, and the prolifera-
tion of T cells was assessed using BrdU ELISA according
to the manufacturer’s instructions (Dojindo Laboratories,
Japan). All proliferation assays were performed in tripli-
cate.

Immunofluorescence assay

The cells were washed, collected, and fixed using
4% paraformaldehyde for 15 min, and addressed with
0.5%Triton X-100 in PBS for 20 min. T cells were incu-
bated with normal goat serum for 30 min, primary antibod-
ies including anti-SOCSI1 antibody (Abcam, Cambridge,
MA, USA) overnight at 4°C, and diluted fluorescent sec-
ondary antibody at 37°C for 1 h. After incubation with
4°C, 6-diamidino-2-phenylindole (DAPI) in the dark for
5 min, the images were observed and collected under
a confocal laser-scanning microscope (Fluo View v5.0
FV300; Olympus, Tokyo, Japan).

Quantitative RT-PCR

Total RNA was extracted using TRIzol reagent (Qia-
gen, Valencia, CA, USA), reverse transcribed into cDNA,
and amplified using SYBR premix Ex Taq II (Takara, Da-
lian, China). Reverse transcription reactions were carried
out at 16°C for 30 min, 42°C for 42 min, and 85°C for 5 min.
The PCR protocol consisted of 40 cycles of 95°C for 10s
and 60°C for 1 min, followed by a heat denaturation pro-
tocol. U6 was used as an endogenous control for miR-155

detection and B-actin was used for mRNA. The 2-AACt
method was used for calculation. The primer sequences
used for RT-PCR are shown in Supplementary Table 1.

Western blot

Total protein from tissues and cells was extracted using
RIPA lysis buffer (Beyotime Corporation, China). The pro-
tein concentration was measured with a BCA assay kit
(Beyotime Corporation, China). Equal quantities of pro-
tein samples were denatured and separated using 8-12%
SDS-PAGE, then were transferred to the PVDF membrane
(4°C, 200mA, 2 h). The membrane was blocked with 5%
skimmed milk powder or BSA for 1 h at room tempera-
ture, then incubated with the diluted primary antibodies
(all from Abcam, Cambridge, MA, USA) at 4°C overnight.
After being washed with PBS, the membranes were incu-
bated with appropriate secondary at room temperature for
1 h. The bands were imaged using ECL color development,
and a gel imaging system was used for imaging analysis.
For the semiquantitative determination of expression lev-
els, ImageJ was used for the analysis of band gray values.

Allogeneic transplantation experiment

Donor skin preparation

The experiment involved allogeneic transplantation.
Six rhesus monkeys (male, age 8-10 years, weight 9-12 kg)
with the same O blood type and Rh factor results were
used. Every two rhesus monkeys were randomly divided
into donor and recipient. Three places were selected on
the back of each monkey as the donor and recipient, and
skin grafts were taken from the site. On the day of trans-
plantation, the 3™ day and the 6" day after the operation,
the cells were induced, cultured, transfected, and collect-
ed in the laboratory in advance by subcutaneous injection
at the transplantation site. The transplanted skin was fi-
nally divided into three groups, with 6 samples in each
group: the control group, the imDC*N¢ group, and the
imDC™155 group. Rhesus monkeys were injected with
thiopental sodium (60 mg/kg) via intramuscular injection.
After anesthesia, the monkeys were positioned in a prone
position and the transplant area was marked with lines.
The area was then sterilized with routine disinfection and
draped with towels. A mixture of 5% lidocaine hydrochlo-
ride and normal saline was pre-mixed and used to perform
local anesthesia for swelling in the transplant area. Using
a surgical scalpel, the skin was incised along the marked
lines, with a diameter of approximately 3 cm. Subcuta-
neous fat and hair were trimmed to create a moderately
thick skin graft, which was rinsed with physiological saline
and soaked in normal saline for later use. The time of skin
harvesting was recorded for calculating the ischemic time
before transplantation.
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Skin grafting and behavioral observation

The prepared skin graft was applied to the wound area
and secured with 4-0 sutures to fully stop bleeding. After
suturing was completed, the wound was coated with gen-
tian violet. Long suture ends were left in place and covered
with Vaseline gauze to protect the skin graft, and moderate
pressure was applied with elastic bandages to fix the graft
on the trunk. During surgery, 50 ml of physiological sa-
line and 1 g of cefuroxime injection were administered to
prevent infection. After the surgery, different treatment
groups received imDC suspension (1 x 10%ml-kg) either
under the skin graft or intravenously, according to their
respective groupings. The rhesus monkeys were then kept
in separate cages for feeding. Clinical rejection was scored
based on a previously published scoring system for Vascu-
larized Composite Allotransplantation (VCA) [21]. On the
7™ day after transplantation, 1/2 of the skin grafts of each
transplantation site were removed for testing.

Hematoxylin and eosin (H&E) staining

The skin tissue in each group was first fixed in 4%
paraformaldehyde. Then, the tissues were treated with xy-
lene and dehydrated using 100%, 95%, 90%, 80%, and
70% ethyl alcohol. After embedding in paraffin, the tis-
sues were continuously cut into slices (about 4 um). After
dewaxing and hydration, the slices were processed with
Harris hematoxylin (5 min), 1% hydrochloric acid alcohol
(5 s), and 0.6% ammonia and eosin (2 min). After dehy-
dration and transparency, the inflammatory infiltration was
evaluated with a light microscope (DM6000B, Leica, Ger-
many). Hematoxylin and eosin staining was assessed by
the Banff 2007 Working Classification of Skin-Containing
Composite Tissue Allograft Pathology [22].

Immunohistochemistry (IHC) assay

The slices were prepared using xylene I, xylene II,
95%, 90%, 80%, and 70% ethyl alcohol, followed by
distilled water. Then, the slices were treated with 3%
hydrogen peroxide and ethylenediamine tetraacetic acid
(EDTA). Subsequently, the slices were blocked and treat-
ed with anti-SOCS1 (1 : 200; Abcam, Cambridge, MA,
USA) at 37°C for 1 h and a secondary antibody at 37°C
for 30 min. After processing with 3,3’'-diaminobenzidine
(DAB), the slices were stained with hematoxylin, 0.1%
hydrochloric acid. Five microscopic fields in each section
were examined under a microscope at the original magni-
fication of x100 (DM6000B, Leica, Germany).

Statistical analysis

GraphPad Prism 9.0 (GraphPad Software Inc., San Di-
ego, CA, USA) was used for statistical analysis. All values
were expressed as mean + SD. Statistical significance was
determined by performing ANOV As for multiple compar-
isons and Student’s #-test for two comparisons. Differences

in animal survival (Kaplan-Meier survival curves) were
analyzed with the log-rank test. P values < 0.05 were con-
sidered statistically significant.

Results

Upregulation of miR-155 during DC maturation

Upon culturing peripheral blood DCs from rhesus
monkeys for 24 hours, the cells appeared isolated, exhib-
ited a small volume phenotype, and formed few imDC
clusters. After 48 hours of culture, most cells adhered
to the wall, with some forming clusters and displaying
varied sizes and morphologies. By the fourth day of cul-
ture, the cell clusters had enlarged, showing increased
suspension growth and colony formation, accompanied
by protrusions on some cells. Subsequently, by the fifth
day, the cells gradually became suspended, displayed
more obvious surface protrusions, but lacked typical den-
dritic-like structures consistent with imDC morphology
(days 1-5) (Fig. 1A). Upon TNF-a stimulation, the cell
volumes expanded, with pronounced surface protrusions.
A subset displayed a dendritic-like appearance indicative
of mDCs, while others retained characteristics resembling
imDCs (days 6-7) (Fig. 1A). RT-qPCR analysis revealed
significant upregulation of miR-155 expression during DC
maturation, with mDCs exhibiting higher miR-155 levels
compared to imDCs (Fig. 1B). This suggests a potential
role for miR-155 in maintaining DC immaturity.

Anti-155 inhibits the expression of major
co-stimulatory molecules and MHC-II,
maintaining an immature function

To assess the impact of miR-155 on DC functional-
ity, we constructed imDC*!155 which exhibited signifi-
cantly reduced miR-155 mRNA levels. Flow cytometry
analysis revealed decreased expression of CD80, CD86,
and MHC II, along with increased CD1a expression in
imDC*415 compared to mDCs (Fig. 2A). Morphological-
ly, imDC%155 displayed an imDC-like appearance with an
uneven surface, shallow folds, and fewer protrusions com-
pared to mDCs (Fig. 2B-D). There was no difference in
the apoptotic rate between mDCs, imDCs, and imDCat-15
(Fig. 2E, F). Notably, imDC*!5 exhibited elevated IL-10
and IL-4 levels, and reduced IFN-y and IL-2 levels in
culture supernatants compared to LPS-induced mDCs
(Fig. 2G-J). Mixed lymphocyte reaction (MLR) exper-
iments revealed increased T cell apoptosis and reduced
proliferation when co-cultured with imDC*!%>, accom-
panied by an elevated proportion of Tregs (Fig. 3A-C).
Additionally, imDC™%155 contributed to the up-regulation
of IL-10 and IL-4 in the co-culture supernatant, while
down-regulating the levels of IL-2 and IFN-y (Fig. 3D-G).
Western blot analysis demonstrated that imDC*!5 elic-
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ited up-regulation expression of GATA-3, FoxP3, and
transforming growth factor B (TGF-f), and down-regulat-
ed expression of T-bet and RORyt (Fig. 3H, I). Meanwhile,
imDCt155 can inhibit the expression of inflammatory fac-
tors in the MyD88/TLR4 signaling pathway (Fig. 3H, I).
imDC*155 suppressed the expression of co-stimulators,
inhibited the proliferation of T cells, induced the secretion
of anti-inflammatory cytokines, and increased the number
of Treg cells. These data suggest that anti-miR-155 can
induce tolerance in DCs.

Anti-155 prolongs skin allograft survival and
promotes Treg cell differentiation in rhesus
monkeys

Two days prior to the skin transplantation procedure,
various imDC suspensions (1 x 10%ml) were administered
intravenously. On the day of the experiment, mid-thickness
skin grafting was performed, followed by the intravenous
injection of imDC suspensions (1 x 10%ml) in various
treatment groups under the transplanted skin. The rhesus
monkeys in each group displayed robust vital signs, ex-
hibited a healthy demeanor, and maintained normal appe-
tites. Additionally, there were no significant differences in
ischemia time among the experimental groups (Fig. 4A).
Subsequently, on the 7™ day after surgery, compared with
the imDC group, the transplanted skin within the first week
exhibited an inflammatory reaction but gradually demon-
strated sustained viability without significant necrosis or
the formation of epidermal scabs (Fig. 4B). HE staining
showed a high degree of cell rejection in the imDCa-15
group, characterized by ulceration and severe acute in-
filtration of polymorphonuclear leukocytes and lympho-
cytes. Conversely, skin tissue sections from the imDC and
imDC*NC groups displayed a well-defined skin tis-

sue structure, mild local inflammatory cell infiltration,
and signs of micro-angiogenesis, indicative of favor-
able growth and healing of the allograft skin (Fig. 4C).
Crucially, the survival time of the transplanted skin in
the imDC™155 group was significantly longer than that in
the imDC*%NC and imDCs from donor groups (Fig. 4D).
T lymphocytes play a central role in transplant rejection
development. Flow cytometry analysis revealed an in-
creased percentage of CD4+CD25+FoxP3+ cells and
suppressed splenocyte proliferation in monkeys receiving
imDC*-155 (Fig. 4E, F). Additionally, plasma levels of
anti-inflammatory cytokines IL-10 and IL-4 were elevat-
ed, while levels of inflammatory cytokines IL-2 and IFN-y
were decreased in imDC®*!15 recipients (Fig. 4G-J).
On the 7™ day post-operation, qPCR analyses indicated
altered expression levels of key factors involved in im-
mune regulation, including TLR4, MyD88, RORyt, TAB2,
T-BET, TGF-B, c-FOS, FOXP3, and GATA-3, favoring
an immunotolerant state in imDC*%!5-treated monkeys
(Fig. 4K). Collectively, these findings suggest that
imDC®-15 prolonged the survival of transplanted skin
in the rhesus monkey model and induced the production
of Tregs and anti-inflammatory cytokines.

Regulatory role of miR-155a in the SOCS1/JAK/
STAT pathway

Studies previously reported that SOCSI is a target
of miR-155 and functions as an inducible negative feed-
back inhibitor of the JAK/STAT signaling pathway. In
this study, imDCt-15 exhibited upregulated SOCS1 ex-
pression both in vitro (Fig. 5A, B) and in skin grafts (Fig.
5C, D). The SOCS1-regulated JAK/STAT pathway may
play a crucial role in the maturation and differentiation
of DC cells. Immunoblotting data revealed that anti-155
led to a substantial increase in SOCS1 protein expres-
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sion, accompanied by concomitant inhibition of the phos-
phorylation levels of JAK1, JAK3, STATI1, and STAT6
(Fig. 5E). This suggests that miR-155 plays a regulatory
role in modulating the SOCS1/JAK/STAT pathway during
DC-mediated immune responses.

DCa155 promotes Treg cell differentiation
and induces immunosuppressive cytokine
secretion via SOCSL1 in vitro

To further elucidate the role of SOCS1 in DCs, we
conducted rescue experiments to investigate the ef-
fect of siSOCS1 on DC and Treg functions under anti-
155 treatment. Flow cytometry analysis revealed that
siSOCS1 expression reversed the anti-155-induced inhi-
bition of co-stimulatory molecules in DCs (Fig. 6A-C).
The BrdU assay results indicated that siSOCS1 treatment
reversed the anti-155-induced inhibition of T-cell pro-
liferation in DCs (Fig. 6D). Additionally, the increased
number of Tregs induced by imDC*'> was significantly
suppressed by siSOCS|1 treatment (Fig. 6E). Compared
with the anti-155 group, siSOCS1 increased the secretion
levels of IFN-y and IL-2 in the supernatant, while de-
creasing the secretion levels of IL-4 and IL-10 (Fig. 6F-I).
Immunoblotting analyses showed that siSOCS1 downreg-
ulated the protein levels of FoxP3 and T-bet, and upreg-
ulated the protein levels of GATA-3, RORyt, and TGF-3
(Fig. 6J). These data suggest the intricate role of
the SOCS1/JAK/STAT signaling pathway in mediating
the immune tolerance elicited by imDCat-155,

Discussion

Maintaining the immature state of DCs is crucial for
preventing immune rejection. Various approaches, includ-
ing pharmacological agents and genetic engineering, have
been explored to generate regulatory DCs. In our study,
we found that anti-155 effectively inhibited DC matura-
tion, while imDC®%155 promoted Treg differentiation and
enhanced the secretion of anti-inflammatory cytokines. In
a monkey model, we observed that imDC!>> prolonged
the survival of transplanted skin and alleviated immune
rejection following skin grafting. The immune tolerance
mediated by imDC™%155 js associated with the SOCS1/
JAK/STAT signaling pathway, confirming miR-155’s role
in DC maturation and immune tolerance.

miR-155 serves as a key regulator of the immune re-
sponse, affecting various immune cell types, including
T cells, natural killer cells, and myeloid cells such as DCs
and MDSCs [23]. Several studies have demonstrated that
miR-155 promotes Treg differentiation and activation
through factors such as SOCS1 and SIRT1, thereby con-
tributing to immune tolerance [24-27]. However, reports
on the role of miR-155 in DC-mediated immune toler-
ance remain limited. Dunand-Sauthier et al. found that
miR-155-mediated silencing of c-Fos expression is a con-
served process essential for DC maturation and function
[28]. Lind et al. demonstrated that miR-155 regulation
of SHIP represents a unique axis regulating DC function
in vivo [29]. Our findings in monkey DCs are consistent
with these studies, indicating that miR-155 expression
in DCs regulates Treg differentiation. Cytokine profiles,
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which are crucial in transplantation rejection, are modu-
lated by miR-155, influencing DC maturation, function,
and apoptosis, thereby affecting T lymphocyte activity
and inflammatory cytokine production [30]. Previous stud-
ies have indicated that miR-155 is associated with CD4*
T cell differentiation, accompanied by changes in cytokine
profiles [30]. This study demonstrated that altered cytokine
profiles in T cells associated with miR-155 expression un-
derscore its role in immune tolerance.

We further explored the function of imDC-15 in
monkey allografts by infecting imDCs with an anti-155
lentivirus and evaluating their effects in a rhesus mon-
key skin transplantation model. Our results indicate en-
hanced immune tolerance induction by donor-derived
imDCs following anti-155 lentivirus infection, possibly
due to the maintenance of DC immaturity and their im-
munosuppressive roles. Furthermore, the imDC!> group
exhibited significant advantages in terms of appearance,
VCA transplantation score, and median survival time
of transplanted skin. This suggests that anti-155 lentivirus
infection delayed the rejection of the transplanted skin.
The infusion of ex vivo-generated DCregs can regulate al-
lospecific T-cell responses and promote allograft tolerance
[31]. Divito et al. [32] demonstrated that host DCs medi-
ate the induction of donor-derived DCregs after infusion,
thereby inducing Tregs and promoting allograft tolerance.
Infusion of immature DCregs from host sources, without
pulsing on the day of transplantation, can reduce the risk
of host sensitization to donor antigens [33]. In the present
study, we observed decreased pro-inflammatory cytokine
levels and increased Treg expression in the imDC-15
group, emphasizing miR-155’s role in monkey skin graft
immune tolerance.

miR-155 regulates the activation, differentiation, func-
tion, and apoptosis of CD4* T cells by targeting multiple
genes, with SOCS1 emerging as a critical factor in the im-
mune system [33-35]. In monkey DCs, we confirmed that
miR-155 regulates the SOCS1/JAK/STAT pathway, con-
sistent with previous studies [24, 36]. SOCS1 modulates
cytokine production and CD4+ T cell differentiation [37-
39]. A higher number of Tregs was observed in the thy-
mus and spleen of T cell-specific SOCS1-deficient mice,
possibly due to upregulation of IL-2 secretion, which can
enhance Treg proliferation. Importantly, SOCSI is a target
of miR-155 in Tregs [36]. Silencing SOCS1 counteracts
the effects of anti-155, underscoring its role in promoting
Treg differentiation. These findings highlight the intricate
regulatory network involving miR-155, SOCS1, and Treg
differentiation in immune tolerance.

Conclusions

In summary, inhibiting miR-155 could inhibit DC
maturation, promote the proliferation and differentiation

of Tregs, and increase the secretion of immunosuppressive
cytokines. imDC™%155 can alleviate acute skin graft rejec-
tion and prolong skin allograft survival in rhesus monkeys.
Our findings highlight the potential of imDC®!% treat-
ment as a novel therapeutic strategy to promote long-term
allograft survival.
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