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Abstract

This study aimed to investigate the mechanisms of innate immunosenescence in elderly patients
with sepsis and to evaluate the potential application of innate immune modulation strategies in clinical
management. Through a literature review, the characteristics of sepsis in the elderly, the aging mech-
anisms of the innate immune system, the impact of immunosenescence on susceptibility to sepsis, and
clinical management strategies for sepsis in the elderly were analyzed. The incidence and mortality
rates of sepsis in the elderly increase significantly with age, closely related to the severity of infection,
the high prevalence of comorbidities, atypical symptoms, and a greater risk of multi-organ failure.
Innate immunosenescence, including the decline in function of neutrophils, monocytes/macrophages,
natural killer cells, and dendritic cells, is a key factor in the increased susceptibility to sepsis in the el-
derly. Immunomodulatory treatments, such as granulocyte colony-stimulating factor (G-CSF), inter-
feron y (IFN-y), and granulocyte-macrophage colony-stimulating factor (GM-CSF), show potential in
improving the prognosis of elderly patients with sepsis and reducing mortality rates. The management
of sepsis in the elderly requires a comprehensive approach that takes into account age-related phys-
iological and pathological changes, as well as early diagnosis and proactive intervention measures.
Immunomodulatory strategies targeting the unique characteristics of immunosenescence in the elderly
offer new avenues for improving survival rates and treatment outcomes in elderly patients with sepsis.
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Introduction

Sepsis is a life-threatening condition characterized by
a dysregulated host response to infection, leading to or-
gan dysfunction [1]. It accounts for 20% of global deaths
[2], posing a significant public health issue, particularly in
adults aged 70 and above. The pathogenesis of sepsis in-
volves complex interactions between immune and adaptive
responses, endothelial dysfunction, and autophagy [3]. Age
is typically considered an independent risk factor for both
mortality and morbidity, with the incidence and death rates
increasing significantly with age [4, 5]. A nationwide study
on sepsis in Taiwan revealed that the incidence of sepsis
in the oldest elderly (> 85 years) was 31 times higher than
in adults (18-64 years) and three times higher than in
the elderly (65-84 years) [6].

The high mortality rate in elderly sepsis patients is
linked not only to infection severity but also to comorbid-
ities, atypical symptoms, and a higher risk of multi-organ
failure [7]. Immunosenescence, the age-related decline in
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immune function, is a critical factor in immune system
impairment and a key risk factor for sepsis severity in
the elderly [8]. Understanding innate immunosenescence
mechanisms can inform more effective clinical strategies
for elderly sepsis patients.

Characteristics of sepsis in the elderly

Infections are common in the elderly, leading to in-
creased hospitalization and mortality, especially in those
aged 85 and older. Lower respiratory tract infections and
urinary tract infections (UTIs) are predominant [9]. A ret-
rospective study indicated that among 308 elderly patients,
respiratory tract infections accounted for 49.7%, UTIs for
33.8%, bloodstream infections for 21.1%, and surgical site
infections for 4.9% [10]. Due to the presence of comor-
bidities, impaired immune function, sarcopenia, reduced
physiological reserve associated with aging, malnutrition,
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and polypharmacy, infections in the elderly are particularly
prone to progress to sepsis [11].

The diagnosis of sepsis in the elderly is challenging due
to atypical symptoms, age-related changes, and comorbid-
ities. Additionally, aging increases the risk of sudden de-
terioration into septic shock, necessitating rapid treatment,
which further complicates diagnosis and management [12].
Typical clinical markers of infection, such as C-reactive pro-
tein (CRP) and procalcitonin, lack sensitivity and specificity
in this age group, leading to delays in treatment [13-15].

Immunosenescence impairs both cell-mediated and
humoral immune responses, worsening prognosis and in-
creasing mortality in elderly sepsis patients [16]. Immu-
nosenescence contributes to post-sepsis organ damage [17].
Specific pathophysiological changes during aging, includ-
ing immunosenescence, lead to higher mortality rates in
elderly sepsis patients [18]. Moreover, a reduction in immu-
nocompetent B cells and impaired humoral immunity are
critical changes in elderly sepsis patients, increasing their
susceptibility to secondary infections [19]. Differences in
immune responses to sepsis between neonates and the el-
derly, particularly at the leukocyte transcriptome level, fur-
ther contribute to the increased mortality in these groups
[20]. Additionally, the decline in immune function in
elderly patients, including defects in T and B cell functions,
alterations in cytokine and chemokine signaling networks,
and a more pronounced pro-coagulant state, play significant
roles in their increased susceptibility to severe diseases.

Innate immune system and its aging
mechanisms

The aging of the innate immune system is character-
ized by a decrease in certain immune cells, changes in
cytokine activity, and an imbalance between pro-inflam-
matory and anti-inflammatory responses [21]. Although
the clinical significance of immune aging is still debat-
ed [22], it is clear that it significantly impacts the health
of the elderly, leading to higher infection risks and reduced
responses to vaccinations [23].

Mechanisms of neutrophil aging
and their impact

Neutrophils, the most abundant white blood cells,
defend against bacterial and fungal infections. Although
aging does not affect the total number of circulating neu-
trophils, their functional aspects decline with age [24].

In the elderly, neutrophil responsiveness to chemotac-
tic factors decreases, reducing migration efficiency to in-
fection sites and increasing infection spread risk [25, 26].
Neutrophils release neutrophil extracellular traps (NETSs)
to capture and immobilize pathogens, but NETs from el-
derly individuals have larger DNA fiber sizes, resulting
in lower bactericidal activity and reduced stimulation of

HaCaT cell proliferation. Additionally, neutrophils from
elderly patients show an increased mitochondrial response,
enhancing NET formation, which contributes to vascular
endothelial damage and thrombosis [27]. Elderly patients’
neutrophils also display a deficient response to TREM1,
leading to reduced cytokine, chemokine, and reactive ox-
ygen species (ROS) production, which increases suscepti-
bility to microbial infections [28].

Mechanisms and effects of aging
on monocytes/macrophages

Monocytes differentiate into macrophages, crucial for
immune defense and tissue repair. With aging, the func-
tions of monocytes and macrophages undergo significant
changes:

In elderly individuals, the number of macrophages re-
mains relatively stable, but their initial response to micro-
organisms and other inflammatory stimuli decreases. Van
Duin et al. observed that macrophages isolated from aged
mice showed a reduced response to TLR-1, TLR-2, and
TLR-4 stimulation, with decreased activation of pro-in-
flammatory signaling pathways such as NF-xB, p38, and
JNK, leading to reduced production of tumor necrosis fac-
tor o (TNF-av), interleukin (IL)-1p, and IL-6 [29-31]. Addi-
tionally, Li et al. found that alveolar macrophages isolated
from aged mice exhibited decreased Racl mRNA expres-
sion, resulting in lower levels of Racl GTP and Arp2/3
activation, reduced downstream F-actin polymerization,
impaired filopodia formation, and decreased MARCO
surface expression, severely affecting macrophage phago-
cytosis [32]. Furthermore, reduced HLA-DR expression
during aging diminishes the ability of macrophages to pres-
ent antigens to CD4* T cells [33], and their ability to clear
apoptotic cells also declines with age. This not only weak-
ens their effectiveness in eliminating infections but also
leads to excessive inflammation and tissue damage [34, 35].

Interferon y (IFN-y) and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) are major activators
of monocytes and macrophages [36]. In sepsis patients, re-
combinant [FN-y or GM-CSF treatment has been shown to
enhance phagocytosis and HLA-DR expression in mono-
cytes and macrophages, improving survival rates [37, 38].
Since aging and sepsis both reduce HLA-DR expression,
and phagocytic function, they may have a cumulative in-
hibitory effect in elderly sepsis patients. Therefore, IFN-y
and GM-CSF could be potential therapeutic alternatives
to reverse monocyte or macrophage dysfunction in elderly
sepsis patients, thereby improving survival rates.

Mechanisms and effects of aging
on natural killer cells

Most studies indicate that the number of natural kill-
er (NK) cells, crucial for innate immune defense, remains
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stable or slightly elevated during aging [39, 40]. Howev-
er, with age, there is a decrease in the subset of cytotoxic
NK cells (CD56™ NK cells) and an increase in the subset
of regulatory NK cells (CD56" NK cells). This shift can
negatively impact immune responses against infections
and malignancies [41, 42].

Functionally, NK cells in the elderly exhibit normal or
increased production of IFN-y but have reduced cytotox-
icity [39, 43]. This reduction in cytotoxicity may be due
to the impaired secretion of perforin in the immune syn-
apse, which is critical for the granule exocytosis (perforin/
granzyme) pathway that NK cells use to induce apoptosis
in target cells [44]. The defect in perforin secretion con-
tributes to the decrease in NK cell cytotoxicity (NKCC)
observed with physiological aging [43]. Additionally,
studies have shown that the reduced cytotoxicity in elderly
NK cells is associated with significantly decreased activi-
ty of acid phosphatase, an enzyme crucial for the mainte-
nance of NK cell cytotoxic function by regulating signal
transduction pathways originating from killer cell immu-
noglobulin-like receptors (KIRs) [45-47].

Aging mechanisms and effects
on dendritic cells

Dendritic cells (DCs) initiate and regulate adaptive im-
mune responses. With aging, the number of DCs slightly
increases [48]. However, aged DCs exhibit impairments in
migration, antigen uptake, pinocytosis, and phagocytosis [49].

CCR7 and CXCR4 are key regulators of DC migra-
tion, and their expression and function decline with age
[50]. Additionally, the CXCL12-CXCR4 axis, another
critical pathway for DC migration, is affected by aging
[51]. Agrawal et al. observed that monocyte-derived DCs
(MODCs) in elderly individuals have reduced antigen
capture capacity, potentially due to impaired AKT ki-
nase activation [52]. Aged DCs exhibit a pro-inflamma-
tory phenotype characterized by increased basal secretion
of pro-inflammatory cytokines such as IL-6 and TNF-a.,
which may be linked to the senescence-associated secre-
tory phenotype, a hallmark of immunosenescence [53-55].
Furthermore, Li ef al. found that CD8a* DCs in elderly
mice show poor upregulation of co-stimulatory molecules
for MHC-II and CD40, leading to a less effective T-cell
priming environment [56].

Immunosenescence and susceptibility
to sepsis

Immunosenescence involves the functional decline and
altered signaling pathways of various immune cells. These
changes increase susceptibility to infections in the elderly
and impair the initiation and maintenance of effective im-
mune responses during infections, leading to higher inci-
dence and mortality of sepsis. A thorough understanding

of these mechanisms is crucial for developing effective
clinical management strategies to improve outcomes for
elderly sepsis patients.

Neutrophil aging and susceptibility
to sepsis

Neutrophil aging significantly impacts their function,
making elderly individuals more susceptible to sepsis [57].
The role of neutrophils in sepsis is complex. Nacionales
et al. observed that aged septic mice exhibit impaired neu-
trophil migration and antibacterial activity, leading to an
inadequate response to infection [58]. This is likely due to
reduced expression of the surface receptors CXCR1 and
CXCR?2 [59]. Additionally, aged mice show an ineffective
bone marrow response to sepsis, further increasing sus-
ceptibility [60].

Elderly individuals often have an excess of NETs
with compromised functionality, resulting in organ dys-
function and severe tissue damage associated with sepsis
[61]. The reduced accuracy of neutrophil migration and
increased formation of NET's prolong the immunosuppres-
sive phase, contributing to higher susceptibility and mor-
tality in elderly patients and septic animals [62].

Neutrophils can also act as antigen-presenting cells,
bridging innate and adaptive immune responses by acti-
vating T cells [19]. However, in elderly septic patients, an
immunosuppressive subset of neutrophils emerges, charac-
terized by the production of large amounts of IL-10, which
further suppresses T cell proliferation and function [63, 64].

Monocyte/macrophage aging
and susceptibility to sepsis

Increased susceptibility to sepsis in aged mice can be
partly attributed to reduced phagocytic activity and im-
mune resolution of monocytes and macrophages, along
with increased expression of aging-related markers and
elevated production of inflammatory cytokines [65]. This
heightened susceptibility is exacerbated by local inflam-
matory responses in aged mice [66].

Rondina et al. observed that elderly septic patients
exhibited enhanced platelet-monocyte aggregate (PMA)
formation, along with increased production of the pro-in-
flammatory cytokines IL-6 and IL-8 by monocytes, both
significantly correlated with 28-day mortality [67]. En-
hanced PMA formation has been shown to amplify inflam-
matory and thrombotic responses in elderly septic patients,
potentially leading to an impaired immune response, organ
failure, disability, and death [68]. Furthermore, aging im-
pairs the phagocytic ability of alveolar macrophages, in-
creasing the susceptibility of elderly individuals to sepsis
[32]. During sepsis, reduced expression of HLA-DR iso-
forms in bone marrow diminishes the antigen-presenting
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capacity of monocytes, further exacerbating immunosup-
pression and reducing pathogen-fighting ability [69].

NK cell aging and susceptibility to sepsis

Research indicates that NK cells undergo significant
functional and phenotypic changes during aging, which
may affect the susceptibility of elderly individuals to in-
fections, particularly sepsis [70].

Aged NK cells exhibit reduced efficacy in combating
bacterial and viral infections, mainly due to decreased
expression of activating receptors such as NKp30 and
NKp46, leading to diminished cytotoxicity at the single
cell level [71]. Furthermore, IL-2-triggered signaling path-
ways are impaired in aged NK cells, along with decreased
mitochondrial function and metabolic flexibility. These
changes result in reduced NK cell effector functions and
increased production of IFN-y, which exacerbates tissue
damage, potentially explaining the higher incidence of sep-
sis in the elderly [39, 43].

Activated NK cells require a transition from oxida-
tive phosphorylation (OXPHOS) to aerobic glycolysis to
maintain their effector functions [72, 73]. However, aged
NK cells exhibit defects in this metabolic transition, lead-
ing to a higher incidence of sepsis in elderly patients [74].
This metabolic shift is also crucial for T cell effector func-
tions [75]. The age-related decline in the ability to adapt
to stress, including reduced reactive oxygen species pro-
duction, may further increase the susceptibility of elderly
individuals to sepsis [76].

Dendritic cell aging and susceptibility
to sepsis

Studies comparing monocyte-derived myeloid dendrit-
ic cells (MDDCs) in elderly individuals to DCs in younger
people have shown that although their phenotypes are sim-
ilar, aged DCs exhibit reduced AKT phosphorylation. This
suggests decreased activation of the PI3K pathway, which
is crucial for phagocytosis and migration, and functions as
a negative regulator of TLR signaling through p38 MAPK
activation. This may explain the impaired innate immune
function in elderly DCs [53].

Additionally, aged DCs display reduced capacity for
antigen uptake through phagocytosis and endocytosis.
The decreased expression and function of HLA-DR further
impair antigen presentation, reducing the efficacy of adap-
tive immune responses and increasing susceptibility to sec-
ondary hospital infections [77].

The significant increase in TNF-a and IL-6 secretion
induced by lipopolysaccharide (LPS) and single-stranded
RNA in aged DCs affects T and B cell activities. This can
lead to inappropriate immune activation or suppression,
with excessive inflammatory responses causing systemic

inflammatory response syndrome (SIRS), thus exacerbat-
ing sepsis progression.

Clinical management strategies

Managing sepsis in the elderly is challenging due to
age-related changes, comorbidities, and institutionaliza-
tion, often resulting in atypical infection presentations
such as confusion, decreased appetite, and gait instability
[78]. These atypical presentations lead to significant delays
in the diagnosis and treatment of sepsis [68]. Therefore,
management strategies must focus on early recognition and
intervention [79]. Recent studies emphasize the importance
of immunomodulatory treatments to improve prognosis
and reduce mortality.

For neutrophil dysfunction, granulocyte colony-stimu-
lating factor (G-CSF) can enhance neutrophil numbers and
function, improving infection clearance and survival rates in
elderly sepsis patients [80]. Targeting neutrophils through
strategies such as A2A adenosine receptor activation can pre-
vent their senescence and promote polarization from the N1
to N2 phenotype, thereby improving their function [81].

Another study indicated that statins can modulate
age-related neutrophil function, enhancing their response
to infections. A randomized, double-blind, placebo-con-
trolled pilot study showed that high-dose simvastatin im-
proved systemic neutrophil function (NETosis and che-
motaxis), reduced systemic neutrophil elastase load, and
improved Sequential Organ Failure Assessment (SOFA)
scores in elderly patients with community-acquired pneu-
monia and sepsis (CAP+S) [82].

Regarding macrophages, GM-CSF can mediate high
phagocytic capacity by regulating glycolysis and lipid me-
tabolism and produce IL-10 under LPS stimulation [83].
GM-CSF also enhances mitochondrial turnover in macro-
phages by regulating fatty acid B-oxidation, tricarboxylic
acid cycle activity, and ATP production [84]. Interferon y-
treated macrophages show increased colocalization with
the autophagy molecule p62, increased autophagosome
formation, and increased lysosomal transport, significantly
reducing the bacterial burden compared to untreated mac-
rophages [85].

Additionally, IL-15 and FLT3 ligand (FLT3L) have
shown potential applications. Interleukin 15 can enhance
the immunostimulatory properties of DCs, inducing strong
CDS8 T cell responses and higher NK cell proliferation [86].
It also effectively recruits immune effector cells such as
CDS8* T cells, NK cells, and yo T cells [87]. Interleukin 15
can enhance NK cell cytotoxicity by upregulating NKG2D
and cytotoxic effector molecule expression and phosphor-
ylating STAT1 and ERK1/2, contributing to effective an-
ti-infection responses [88]. FLT3L, a DC growth factor,
has been shown in mouse models to prevent the decline
in post-sepsis T cell numbers and improve T cell function
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Table 1. Immune cell aging and modulation strategies in elderly patients with sepsis

Type of immune cell Modulators Functions Future prospects
Neutrophils TREMI, Decreased responsiveness to chemotactic factors, Development of new NET modulators
G-CSF reduced efficiency in migrating to infection sites to enhance bacterial clearance

Monocytes/ IFN-y, Reduced initial response to microbes, decreased Use of IFN-y and GM-CSF treatments to

macrophages GM-CSF activation of pro-inflammatory signaling pathways improve macrophage function and survival rates

Natural killer (NK) Perforin, Reduced cytotoxicity, decreased perforin Enhancement of NK cell cytotoxicity

cells interleukin 2 secretion and anti-infection capabilities

Dendritic cells CCR7, Impairment in migration, antigen uptake, Improvement of DCs’ antigen presentation
CXCR4, pinocytosis, and phagocytosis ability, enhancement of T-cell priming
CXCLI12 efficiency

[89], suggesting potential for ameliorating sepsis-induced
immunosuppression.

Strategies targeting immune cell functional chang-
es, including enhancing metabolic activity and adjusting
immune signaling pathways, can significantly improve
monocyte function and infection response in elderly pa-
tients [90].

The intricate relationship between aging, immune
function, and sepsis susceptibility is further elucidated in
the following summary table (Table 1).

Conclusions

This review explores the key mechanisms of innate
immune aging in elderly sepsis and its impact on disease
management. With aging, the functions of immune cells
such as neutrophils, macrophages, NK cells, and dendritic
cells decline, increasing susceptibility to sepsis and wors-
ening disease severity and prognosis. These cellular se-
nescence processes include reduced chemotaxis, impaired
bactericidal activity, and altered cytokine and chemokine
production, which collectively weaken the immune re-
sponse to infections in the elderly.

Diminished innate immune function poses specific
challenges in the clinical management of sepsis in the el-
derly, necessitating adjustments and optimizations to ex-
isting treatment protocols. Immunomodulatory strategies
targeting the unique characteristics of immune aging in
the elderly show promising potential for improving out-
comes.

Future research must delve deeper into the detailed
mechanisms of innate immune aging related to elderly
sepsis and develop new diagnostic and therapeutic tools
to better understand and manage this complex clinical is-
sue. Particularly, validating these new immunomodulatory
strategies in clinical trials will provide critical guidance for
managing elderly sepsis patients. Through these efforts, we
aim to offer more effective, personalized treatment plans
for elderly sepsis patients, ultimately improving their prog-
nosis and quality of life.
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