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Abstract

Introduction: Acute kidney injury (AKI) is a common complication of sepsis, characterized by 
sharply declining renal function. As a global concern, understanding its pathogenesis and improving 
diagnosis and therapy face significant challenges. MicroRNAs are involved in the progression of a va-
riety of diseases.

This research was focused on differences in expression and clinical predictive value of miR-582-5p 
in sepsis-induced AKI.

Material and methods: Blood and urine samples were collected from 180 patients. Sepsis-induced 
AKI was imitated in vitro by human kidney 2 (HK2) cells treated with 10 μg/ml lipopolysaccharide 
(LPS). The relative expression of miR-582-5p and HMGB2 in different conditions was quantified by 
qRT-PCR. Regulation of gene expression was performed by cell transfection. Cell viability and apop-
tosis were detected subsequently. Kidney injury and inflammatory assessment were analyzed by means 
of ELISA. Estimation of oxidative stress was performed using the corresponding kit. The dual luciferase 
reporter system verified the targeting relationship between miR-582-5p and HMGB2. 

Results: Relative expression of miR-582-5p was lower in sepsis patients who suffered AKI later, along 
with LPS-induced HK2 cells. Both weak viability and elevated apoptosis were reversed by up-regulated 
miR-582-5p in HK2 cells exposed to LPS. In addition, the concentration of inflammatory factors and 
oxidation levels showed a significant decrease, based on up-regulated miR-582-5p. The clinical predictive 
value of miR-582-5p was visualized by a ROC curve with high sensitivity and specificity.

Conclusions: Up-regulated miR-582-5p reduced sepsis-induced AKI, and HMGB2 was a potential 
downstream target of miR-582-5p.
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Introduction
Sepsis is a serious, complex disease characterized 

by a systemic inflammatory response triggered by se-
vere infection of the organism, which can lead to various 
life-threatening tissue damage and organ dysfunction, es-
pecially the kidney, an extremely susceptible organ [1-3]. 
Acute kidney injury (AKI), characterized by a dramatic 
decline in renal function, is one of the most common and 
serious complications of sepsis. Up to 50% of patients with 
AKI experience sepsis, and the proportion of sepsis pa-
tients developing AKI in the late stage reaches 60% [4-6]. 
The latest consensus, published in 2023, of the 28th Acute 
Disease Quality Initiative (ADQI) makes it clear that sepsis 

accounts for 45-70% of all cases of AKI among critically 
ill patients [7], which is closely associated with high mor-
tality. These data indicate that sepsis-associated AKI is an 
unignorable threat to the healthy survival of all mankind.

Although emerging research on the epidemiology, 
pathophysiology, and clinical risk factors of sepsis-asso-
ciated AKI has advanced diagnosis and treatment, there 
is still a significant lack of specific treatment methods in 
clinical practice. Currently, some indicators are applied for 
early evaluation of kidney injury, such as serum creatinine 
(Scr), cystatin-C (Cys-C), neutrophil gelatinase-associat-
ed lipocalin (NGAL), kidney injury molecule-1 (KIM-1), 
tissue inhibitor of metalloproteinase-2 (TIMP-2), and in-
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sulin-like growth factor binding protein (IGFBP7). How-
ever, their limited diagnostic performance cannot satis-
fy the clinical demands of most of them [8]. Moreover, 
the mechanism of sepsis-associated AKI remains to be 
elucidated [4]. Existing studies have found that many fac-
tors are related to the occurrence and development of AKI, 
including inflammation, intracellular endotoxin, mitochon-
drial dysfunction, and microcirculation disorder, among 
others [9]. In recent years, many studies have shown that 
the inflammatory response is an important pathogenesis 
of AKI [10-13]. Similarly, the 28th ADQI consensus points 
out that sepsis-associated AKI is also closely related to 
abnormal inflammation, in addition to microcirculation 
disorders and cellular metabolic reprogramming. Thus, it 
can be seen that it is of great significance to explore new 
biomarkers with high specificity and sensitivity for the ear-
ly prediction and diagnosis of AKI in patients with sepsis.

MicroRNAs (miRNAs) are short-sequence RNAs de-
rived from genomic DNA with regulatory functions that are 
widely present in eukaryotes and do not have an open read-
ing frame. Previous studies have shown that miRNAs are 
implicated in various diseases by regulating the expression 
of target messenger RNA [14-16]. In addition, some studies 
have found that changes in miRNA expression levels may 
contribute to the treatment of AKI [17-21]. For instance, in 
HK2 cells treated with lipopolysaccharide (LPS), the ex-
pression of miR-20a and miR-942-5p was down-regulated 
while the corresponding inflammatory factors were up-reg-
ulated [22, 23]. In a rat model of sepsis established by CLP 
(cecal ligation and puncture) surgery, increasing the expres-
sion of miR-22-3p and miR-191-5p reduces the inflamma-
tory response [24, 25]. Reduced inflammation alleviates 
LPS-induced kidney injury [26]. Previous studies have 
found that miR-582-5p is down-regulated in many inflam-
mation-related diseases and plays an inflammation-inhibit-
ing role [27-29]. Downregulation of miR-582-5p in diabetic 
CKD (chronic kidney disease) was also demonstrated [30]. 
The potent anti-inflammatory activity of miR-582-5p led us 
to speculate that miR-582-5p might be a potential candidate 
for predicting and evaluating sepsis-induced AKI.

In this study, sepsis-induced AKI patients were em-
ployed to validate the predictive value of miR-582-5p 
for AKI occurrence, which could provide a reference for 
screening novel biomarkers of AKI prediction, diagnosis, 
and even treatment for clinical application. In addition, an 
LPS-induced HK2 cell model was established to examine 
the functional role of miR-582-5p in AKI.

Material and methods

Clinical patients and sample collection

One hundred and eighty patients with sepsis were con-
tinuously enrolled in this study at Chengdu BOE Hospital. 
The basic clinical characteristics of these informed and 

consented patients were analyzed as presented in Table 1. 
All diagnoses of sepsis and AKI were made according to 
the clinical criteria, and hospitalized patients were divid-
ed into two groups. The non-AKI group included patients 
whose condition did not progress to AKI, while the AKI 
group included those who developed AKI subsequently, 
during sepsis. Recently, the definition of sepsis-induced 
AKI needed to meet the following requirements simulta-
neously: Firstly, patients should be at least than 18 years 
old. Then, within 48 hours, the Scr increase should be at 
least 0.3 mg/dl, or the increase within 1 week should be 
at least 1.5 times the baseline. In addition, the exclusion 
criteria are as follows: Pregnant women, patients after kid-
ney transplant surgery, and those who suffered nephrotoxin 
within 4 weeks prior to hospitalization were not consid-
ered. Moreover, patients with conditions such as severe 
hepatitis, immunodeficiency, other chronic kidney disease, 
or obstructive uropathy were also excluded. This study was 
conducted with the permission of the Ethics Committee 
(no. 20220106) and with informed consent obtained from 
each patient. After hospitalization, peripheral blood and 
urine samples were collected in a timely manner with 
the patient’s permission, which was prior to any treatment. 
Blood samples for clinical hematology detection were col-
lected into anticoagulant blood collection vessels with 
EDTA-K2 and blood samples for serum were collected 
without anticoagulant. The serum and urine samples were 
obtained by centrifugation at 3000 rpm for 10 minutes and 
5 minutes, respectively. Prepared samples were stored at 
–80°C promptly for later examination.

Cell culture and transfection

Human HK-2 cells purchased from the Cell Bank 
of the Chinese Academy of Sciences were cultured in 
RPMI-1640 medium (Gibco, 11875093) with 10% FBS 
(Gibco, 26010074), following routine aseptic culture pro-
cedures. To establish a valid model, different durations 
of exposure to LPS (Solarbio, IL2020) were necessary 
for HK-2 cells, referring to existing studies. Furthermore, 
HK-2 cells were treated with 10 μg/ml LPS for 12 hours 
for the simulation of AKI in vitro [23, 31]. Before transfec-
tion, LPS-induced cells were transferred to 24-well plates 
at the density of 5 × 104/well. An approximate confluence 
of 80% was favorable for cell transfection. Exogenous 
RNA was introduced into the cells by the Lipofectamine 
3000 (Thermo Fisher Scientific, L3000001) reagent. 
The miR-582-5p mimic (miR-mimic, 5′-UUACAGUU-
GUUCAACCAGUUACU-3′) and negative control (mim-
ic-NC, 5′-3’GGACCAAATCTCGAGATTTGG) were 
specially synthesized by Genepharma in China. The ele-
vated miR-582-5p level was regulated by the correspond-
ing miR-mimic in the following scenario. Cell transfection 
consisted of 4 groups, including the control group, LPS 
group, LPS + mimic-NC, and LPS + miR-mimic.
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qRT-PCR

RNA extraction with Trizol reagent (Invitrogen, 
12183555CN) was carried out according to the specifica-
tion. For tissue samples, it was necessary to homogenize 
with nuclease-free grinding rods (Sangon, F619071) after 
adding Trizol reagent, and vortexing was sufficient for cell 
samples. The complementary DNA synthesized by the con-
ventional reverse transcription kit (Qiagen, 218061) was 
used for the qRT-PCR test with the kit (Takara, RR420A). 
The discrepant gene expression was evaluated with β-ac-
tin as an internal control according to the 2−ΔΔCt methods. 
The brief amplification conditions were predenaturation at 
95oC for 30 s followed by denaturation at 95oC for 30 s, 
annealing at 60oC for 40 s, and extension at 72oC for 30 s, 
which were performed in 40 cycles. 

Cell viability assay

Cell viability after LPS treatment and/or diverse 
transfections was estimated by the CCK-8 Kit (Solarbio, 
CA1210) based on the standard curve prepared accord-
ing to the specifications. 96-well plates were used for cell 
seeding, with 1 × 104 cells per well. HK-2 cells were ex-
posed in 10 μg/ml LPS for 0 hours, 6 hours, 12 hours, 

and 24 hours. These cells exposed for different times were 
duly collected for subsequent assays. The cells without 
any treatment were regarded as the negative control. Cell 
Counting Kit-8 (CCK-8) reagents (10 µl/well) were added 
and any air bubble were avoided. Then they were incu-
bated for two hours under normal cell culture conditions. 
An enzyme immunoassay analyzer was necessary to detect 
the optical density value in each well at 450 nm.

ELISA analyses

The kidney injury assessment as well as inflammatory 
response detection were conducted by means of ELISA. 
Both main renal injury indicators and inflammatory fac-
tors were detected with an ELISA kit. An automatic bio-
chemical analyzer was applied for content determination 
of cystatin-C (Elabscience, E-EL-H3643) and Scr (Njjc-
bio, C011-2-1) to assess kidney injury, and additional 
measurements of NGAL (Elabscience, E-EL-H6127) and 
KIM-1 (Elabscience, E-EL-H6029) were also conducted. 
On the other hand, cytokines including interleukin (IL)-1β 
(Elabscience, E-EL-H0149) and IL-6 (Elabscience, 
E-EL-H6156), along with tumor necrosis factor α (TNF-α; 
Elabscience, E-EL-H0109), were also used to indicate 

Table 1. Clinical characteristics of the study groups

Characteristics Non-AKI
(n = 90)

AKI
(n = 90)

P value

Age (years) 49.94 ±14.64 50.97 ±13.85 0.71

Gender, n (%) 0.41

Male 62 (68.89) 67 (74.44)

Female 28 (31.11) 23 (25.56)

BMI (kg/m2) 20.83 ±2.73 20.96 ±2.82 0.75

Complications, n (%)

Hypertension 15 (16.67) 9 (10.0) 0.19

Diabetes mellitus 12 (13.3) 9 (10.0) 0.49

Cardiovascular disease 4 (4.44) 6 (6.67) 0.52

APACHE II score 12.42 ±3.22 15.49 ±4.91 < 0.001

SOFA score 8.30 ±2.69 10.07 ±3.22 0.16

CRP (ng/ml) 66.37 ±21.35 83.97 ±28.53 0.01

PCT (ng/ml) 3.69 ±1.43 3.86 ±1.14 0.02

WBC (×109/l) 14.19 ±6.89 15.47 ±8.40 0.03

eGFR (ml/min per 1.73 m2) 51.21 ±19.03 64.85 ±13.90 0.02

Scr (μM) 103.35 ±26.42 150.33 ±30.98 0.04

Cys-C (mg/l) 0.62 ±0.19 1.78 ±0.70 < 0.001

NGAL (ng/ml) 56.76 ±13.86 80.55 ±19.70 0.01

KIM-1 (ng/ml) 4.38 ±0.43 22.63 ±6.05 < 0.001

BMI – body mass index, APACHE – Acute Physiology and Chronic Health Evaluation, SOFA – Sepsis-related Organ Failure Assessment, CRP – C-reaction 
protein, PCT – procalcitonin, WBC – white blood cells, eGFR – estimated glomerular filtration, Scr – serum creatinine, Cys-C – cystatin-C, NGAL – neutrophil 
gelatinase-associated lipocalin, KIM-1 – kidney injury molecule-1
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the inflammation level. The concentration was calculated 
based on the standard curve obtained from a standard sam-
ple on the same ELISA plate. It should be noted that both 
serum samples and cell supernatants needed centrifugation 
at 4oC to remove impurities, strictly following the instruc-
tions of the ELISA kit. Additionally, the blank control was 
also necessary for the ELISA assay.

Cell apoptosis test

The Annexin V-FITC/PI Double Staining Cell Apop-
tosis Assay Kit (Beyotime, C1062S) was used to detect 
apoptotic cells. HK-2 cells after treatment were trypsinized 
and collected by centrifugation. After washing three times 
with 1 × phosphate-buffered saline (PBS) buffer, which 
was important for subsequent experiments, cell pellets 
were resuspended in binding buffer. Propidium iodide 
and Annexin V-FITC dye were added to the cell suspen-
sion. Then, it was necessary to incubate for 15 minutes 
in the dark at room temperature. Slight shaking during 
the incubation process was beneficial to improve staining. 
The cells must be examined as soon as possible after stain-
ing, usually within an hour. Finally, a flow cytometer was 
used to assess cell apoptosis.

Dual-luciferase reporter assay

The wild-type 3′UTR of HMGB2 (WT-HKGB2) 
and mutant (MUT-HMGB2) were severally cloned into 
the pGL3 vector (Promega, E1741). Subsequently, re-
combined vectors were co-transfected with miR-582-5p-
mimic and miR-582-5p-mimic-NC separately into HK-2 
cells. The activation performed by luciferase was detected 
in the dual-luciferase reporter system kit (Promega, E1960) 
48 h after transfection.

Oxidative stress assay

In LPS-induced HK-2 cells, the oxidative stress level 
was identified by classical indicators including reactive ox-
ygen species (ROS), malondialdehyde (MDA), and super-
oxide dismutase (SOD). These metrics were quantized by 
the corresponding assay kit (Beyotime, S0033M, S0131M, 
S0101M), according to the manufacturer’s protocols and 
multifunctional microplate reader. Cells were harvested by 
centrifugation at 600 g for 5 min and washed once with 
PBS pre-cooled at 4oC or by an ice bath. The cells were 
properly resuspended after adding an appropriate amount 
of sample preparation solution to fully lyse. Then, samples 
were then centrifuged at 12,000 g at 4oC for 3-5 min, and 
the supernatant was taken as the sample to be tested. During 
the experiment, blank control groups were necessary.

Statistical analysis

All data were analyzed using SPSS Statistics 23.0 or 
GraphPad Prism 7.0 and they were presented as mean 
±SD. Differences of continuous variables between two 

groups were calculated by unpaired Student’s t-test, and 
the one-way ANOVA test was applied for multi-group 
comparison. The chi-square test was used for comparison 
of categorical variables. The diagnostic performance was 
calculated using the receiver operator characteristic (ROC) 
curve. Pearson’s correlation analysis was applied for cor-
relation examination. Statistical significance was set at  
a p value less than 0.05.

Results

Baseline characteristics of sepsis patients

Clinical information of all admitted sepsis patients was 
recorded and exhibited in Table 1. Comparative analysis 
of multiple indicators indicated no difference between non-
AKI and AKI groups, such as BMI, common complication, 
age, in addition to gender. Also, Sepsis-related Organ Fail-
ure Assessment (SOFA) levels in AKI patients were not 
significantly different to those in non-AKI patients. Levels 
of Scr, NGAL, eGFR, CRP, PCT, and WBC were higher 
in AKI patients (p < 0.05). By contrast, levels of APACHE 
II, Cys-C, and KIM-1 were significantly lower in non-AKI 
patients (p < 0.001).

Down-regulated expression of miR-582-5p  
in sepsis-induced AKI patients

To investigate the role of miR-582-5p in sepsis-induced 
AKI, samples from 180 patients were collected for RNA 
extraction and subsequent qRT-PCR through conven-
tional experimental procedures. As shown in Figure 1A, 
the expression levels of miR-582-5p in the non-AKI group 
were significantly higher than those in the AKI group  
(p < 0.001). This suggested that miR-582-5p may be asso-
ciated with sepsis-induced AKI. Correlation analysis also 
showed the significant correlation between serum miR-
582-5p and markers of kidney injury including Scr, Cys-C, 
NGAL, and KIM-1 (Table 2).

Diagnostic performance of miR-582-5p for early 
screening of AKI from sepsis patients

Further investigations focused on the diagnostic perfor-
mance of miR-582-5p. The ROC curve was applied to con-
firm previous speculation. As shown in Figure 1B, the area 
under the miR-582-5p ROC curve was 0.937, which dis-
played a relatively satisfactory sensitivity and specifici-
ty of 87.8% and 88.9%, respectively. Cutoff values were 
determined based on the maximum of Youden’s index to 
calculate the optimum sensitivity and specificity.

Up-regulated miR-582-5p improved cell viability 
and inhibited apoptosis

In LPS-induced HK2 cells, we found that with the pas-
sage of time, a significant downward trend was observed in 
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cell viability (Fig. 2A) and the relative level of miR-582-
5p (Fig. 2B). In order to further explore the role miR-582-
5p played, cell transfection was employed to enhance its 
expression level (Fig. 2C). The up-regulated miR-582-5p 
significantly reversed the declining cell viability measured 
at 72 h after transfection (Fig. 2D), along with high apop-
tosis (Fig. 2E).

Enhanced miR-582-5p suppressed inflammatory 
response and oxidative stress

Considering that inflammation plays an important 
role in the development of AKI, we focused on whether 
the highly expressed miR-582-5p affected the inflammatory 
response. In HK-2 cells treated with LPS, the concentra-
tions of typical cellular inflammatory factors such as IL-1β,  
IL-6, and TNF-α were significantly increased. However, 
unexpectedly, elevated miR-582-5p expression significantly 
attenuated the high inflammatory trend (Fig. 2F). A similar 
function was also found in oxidative stress. Compared with 
the control group, increasing expression of miR-582-5p de-
creased the concentrations of ROS and MAD and increased 
the concentration of SOD at the same time (Fig. 2G). Brief-
ly, up-regulated miR-582-5p contributed to inhibiting in-
flammation and accelerating antioxidants.

HMGB2 could be regulated by miR-582-5p  
by direct targeting

The online database ENCORI was applied to screen 
interacting target genes. HMGB2 was found to have com-
plementary paired sequences with miR-582-5p (Fig. 3A). 
Based on this, a dual-luciferase reporter assay was per-
formed for further analysis. After transfection with miR-
582-5p mimics, luciferase activity was distinctly weakened 
for WT-HMGB2. By contrast, the enhancement of miR-

582-5p had no effect on luciferase activity for MUT-
HMGB2 (Fig. 3B). Hence, miR-582-5p targeted HMGB2 
directly in HK-2 cells. The measurement of the relative 
level indicated that increased HMGB2 expression was di-
minished by raised miR-582-5p (Fig. 3C). The correlation 
analysis indicated that serum HMGB2 levels were negative-
ly correlated with miR-582-5p levels (r = –0.626, Fig. 3D).

Discussion
Sepsis-induced AKI is a complex, universal disease 

with high incidence and mortality, especially for critical 
patients [32]. Its unknown and puzzling pathophysiology 
may account for the lack of effective means in prevention 
and treatment [33]. Here, we found evidence of the reli-
able predictive value of miR-582-5p for sepsis-induced 
AKI patients.

Non-coding RNAs participate in many physiologi-
cal processes in an organism by affecting the expression 
of genes [34, 35]. Functional studies of miRNAs have 
shown that they are closely implicated in a variety of dis-
eases [36, 37]. When disease occurs, miRNA in diseased 
tissues or organs will present specific expression pro-
files [38, 39]. The expression dysregulation may act as 

Fig. 1. Expression of miR-582-5p in sepsis patients and its diagnostic performance. A) Relative expression of miR-582-5p 
in sepsis-induced acute kidney injury (AKI) patients (n = 90), compared to the non-AKI groups (n = 90). B) Evaluation 
of the diagnostic ability of miR-582-5p. Each sample was bio-replicated 3 times. A) Student’s t test. ***p < 0.001 com-
pared to non-AKI group
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Table 2. Correlation of serum miR-582-5p levels with kid-
ney injury markers

Kidney injury markers Pearson r value P value

Scr –0.439 < 0.001

Cys-C –0.559 < 0.001

NGAL –0.467 < 0.001

KIM-1 –0.645 < 0.001

Scr – serum creatinine, Cys-C – cystatin-C, NGAL – neutrophil gelatinase- 
associated lipocalin, KIM-1 – kidney injury molecule-1
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Fig. 2. Cont. G) Highly expressed miR-582-5p enhanced 
the ability to resist oxidative stress. Three repetitions were 
required for each experiment and each sample was bio-rep-
licated 3 times. G) Student’s t test. *p < 0.05 compared to 
control; ***p < 0.001 vs. control group; ##p < 0.01 vs. LPS 
+ mimic-NC; ###p < 0.001 vs. LPS + mimic-NC
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the interaction of miR-582-5p and HMGB2 in HK-2 cells. 
C) Expression level of HMGB2 measured by qRT-PCR. 
D) Correlation between miR-582-5p and HMGB2 by Pear-
son correlation analysis. Three repetitions were required 
for each experiment and each sample was bio-replicated 
3 times. B, C) One-way analysis of variance. Student’s  
t test. ***p < 0.001 compared to control group, ###p < 0.001 
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a tumor suppressor or oncogene [40, 41]. In this study, 
it was found that relative expression of miR-582-5p was 
apparently lower in both sepsis-induced AKI patients and 
LPS-induced HK2 cells. In an in vitro cell model, HK2 
cells exhibited reduced cell viability and increased apop-
tosis. However, high expression of miR-582-5p by trans-
fection improved cell viability and apoptosis to a large ex-

tent. A similar situation has been documented in previous 
cancer-related studies [42-44]. For instance, in colorectal 
cancer patients, miR-582-5p was proven to be lowly ex-
pressed, which enhanced the migration of tumor cells [45]. 
High miR-582-5p expression greatly increased cell viabili-
ty and simultaneously reduced apoptosis through ROCK1 
[46]. It was also found that in CRC (colorectal carcinoma) 
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tissues, miR-582-5p showed lower expression, and it plays 
an important role in cell cycle arrest and apoptosis [47]. 
The above results also indicated that miR-582-5p had pre-
dictive value.

Inflammation and oxidative stress are inseparable 
from the disease process. Oxidative stress originates 
from the imbalance between the production and elimina-
tion of oxygen-free radicals in the body or cells, which is 
widely regarded as an important factor accelerating many 
diseases and aging [48]. Continuous oxidative stress can 
induce an inflammatory response, which can mediate a va-
riety of diseases [49]. Various transcription factors can also 
be activated by oxidative stress, such as PPAR-γ, Nrf2, 
and P53, and thereby induce expression of multiple genes, 
including cell cycle regulatory factors and inflammatory 
factors [50, 51]. In our research inflammatory factors and 
oxidation levels showed apparent mitigation following cell 
transfection of miR-582-5p mimics, which was consistent 
with previous reports. Increasingly, studies have indicated 
that miR-582-5p reduces inflammatory-associated factors 
including TNF-α and IL-1β, in various mice models and 
cell models [27, 52, 53]. It has also been reported that 
by regulating inflammation, along with oxidative stress, 
miR-582-5p overexpression is conducive to amelioration 
of PC12 cell injury [28].

HMGB2 is a chromatin-associated protein that plays 
a role in transcription, cell proliferation and tumorigenesis 
[54]. Further analysis in this research identified HMGB2 
as a potential target for miR-582-5p. The expression 
of HMGB2 was elevated in LPS-induced HK2 cells. 
However, it decreased following an increase of miR-582-
5p expression, revealing a negative correlation between 
them. In previous studies, HMGB2 has been implicated  
in inflammation and oxidative stress. HMGB2 is involved in 
the regulation of abdominal aortic aneurysm inflammation 
through NF-κβ signaling [55]. In osteoarthritis, HMGB2 
interacts with circSLTM and participates in the regulation 
of inflammation and apoptosis [56]. HMGB2 is also proven 
to target miR-223 in acute lung injury models exposed to 
LPS and mediates oxidative stress and autophagy [57, 58].

In brief, downregulated miR-582-5p serves as a bio-
marker for sepsis-induced AKI. Elevated miR-582-5p 
expression was beneficial to HK-2 cell viability through 
mediating oxidation and inflammation. Although our re-
sults showed that miR-582-5p played an important role 
in regulating sepsis-induced AKI and miR-582-5p func-
tioned perhaps through HMGB2, due to some differences 
between the cell model and the actual clinical application, 
the role and regulatory mechanism of miR-582-5p in sep-
sis-induced AKI still require further confirmation in vivo.
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