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Abstract

Introduction: STK11 mutation is common in lung adenocarcinoma (LUAD), but the molecular

mechanism of STK11 regulation in LUAD remains uncharacterized. This study intended to explore
the effect of STK11 mutation on activity and proliferation of CD4* T cells in LUAD.

Material and methods: qRT-PCR experiments verified the STK11 level in different cell models.
Cell Counting Kit-8 (CCK-8) and colony formation experiments evaluated proliferation ability. CCK-8
detected activity of CD4* T cells. Immunohistochemistry detected levels of related genes. Immunofluo-
rescence assayed levels of CD4* T cell infiltration.

Results: STK11 mutation could accelerate proliferation of LUAD cells and impact activity of CD4*
T cells. Further research found that STK11 mutation affected tumor proliferation by impacting CD4*
T cell activity in LUAD.

Conclusions: This study revealed the regulatory mechanism of STK11 mutation affecting tumor
proliferation by impacting CD4* T cell activity in LUAD. It suggested that STK11 may be a possible
biological target for LUAD patients, and inhibiting STK11 mutation or cutting off its regulatory pathway

for immune function may be an effective strategy for STK11-mutated tumor patients.
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Introduction

Lung adenocarcinoma (LUAD) is a non-small cell lung
cancer that originates from the inner wall cells of the lungs,
representing 40% of all lung cancer cases [1-3]. Currently,
therapeutic options for LUAD include surgery, chemother-
apy, radiotherapy, targeted therapy, and immunotherapy
[4, 5]. Most targeted therapy drugs act on cancer-associ-
ated specific proteins, exerting various anti-cancer effects
while causing relatively little damage to normal cells [6-9].
Similarly, the pharmacological mechanism of some drugs
in immune therapy for LUAD is achieved by blocking
the function of specific marker proteins, ultimately achiev-
ing therapeutic efficacy [10]. Targeted therapy and im-
mune therapy targets are often proteins that are abnormally
expressed or have abnormal structures in cancer cells, such
as EGFR, ALK, ROS1, PD-L1, etc. [11]. STK11, as a clas-
sic biomarker, has a certain value for prognostic prediction
of lung cancer patients [12].

One of the most frequently altered genes in LUAD
is STK11 [13]. The STK11 gene produces a protein that
functions as a tumor suppressor and is essential for regu-
lating the development, proliferation, and differentiation
of tumor cells [14, 15]. Therefore, in order to create more
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potent targeted therapeutics, it is essential to comprehend
the molecular basis of the STK11 mutation in LUAD. Sim-
ilar to the common mutation of another gene, EGFR, in
LUAD, EGFR inhibitors (such as gefitinib, erlotinib, and
osimertinib) can block the function of the EGFR protein,
and these drugs have shown good therapeutic effects in
EGFR-mutated patients [16-18]. Serine/threonine kinase
(BRAF) is another gene that can mutate and promote can-
cer growth in LUAD patients. BRAF inhibitors (such as
dabrafenib and trametinib) can target the mutated BRAF
protein and help slow tumor growth [19-21]. Despite
the fact that there are no reports of STK11 inhibitors being
used successfully right now, recent studies have shown
that patients with STK11 mutation may benefit from tar-
geted therapies, such as targeting the mTOR pathway [22]
or Hippo pathway [23]. Therefore, exploring the regulatory
pathways of STK11 has enormous potential for develop-
ment in the treatment of LUAD.

CD4* T cells (helper T cells) are immune cells that
are critical in adaptive immune responses [24, 25]. CD4*
T cells regulate other cells in the immune system, and are
essential for defending against intracellular pathogens
(such as viruses and certain bacteria) and activating other
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immune cells (such as B cells and CD8* T cells) [26-28].
CD4* T cells have various subtypes, including Th1, Th2,
Th17, Treg, and Tth cells, each with unique functions and
cytokine profiles [29, 30]. Thl cells are involved in de-
fense against intracellular pathogens [31], while Th2 cells
play a role in the response to extracellular parasites, bac-
teria, allergens, and toxins [32-34]. Th17 cells are crucial
for defense against bacteria and fungi [35], and Treg cells
assist in controlling immune responses to prevent autoim-
munity [36]. Defective CD4* T cell function can lead to
immune deficiency diseases, such as HIV/AIDS [37, 38],
while overactivation of CD4* T cells can lead to auto-
immune diseases such as multiple sclerosis and lupus
[39, 40]. CD4* T cells have a complex role in immune
responses in cancer. First, CD4* T cells promote anti-
tumor immune responses by activating other immune cells
and helping to kill cancer cells [41, 42]. Second, CD4*
T cells can actually drive cancer cell proliferation by pro-
viding growth factors and cytokines that stimulate cancer
cell growth and division [43]. The current research focus
is on finding a balance point between these pro-tumor and
anti-tumor effects of CD4* T cells and developing new
immunotherapies to enhance anti-tumor responses and
facilitate prognosis of LUAD patients [44, 45]. The com-
plex interactions between CD4* T cells and cancer cells in
LUAD, and how best to target this relationship for thera-
peutic benefit, remain to be explored.

This study mainly investigated the impact of STK11
mutation in LUAD on the shape of LUAD cells and CD4*
T cells by in vitro cell experiments. Finally, our study
showed that STK11 mutation in LUAD cells could pro-
mote LUAD cell proliferation and migration while re-
pressing the activity of CD4* T cells.

Material and methods

Clinical samples

Clinical information of patients who had not received
any treatment was collected from Wenzhou People’s Hos-
pital between March 2022 and May 2023. By genetic de-
tection, tumor tissues with wild-type STK11 (n = 15) and
tumor tissues with mutant-type STK11 (n = 15) were found.
All patients included in the study signed an informed con-
sent form, and the experimental procedures involving clin-
ical samples and information were approved by the Ethics
Committee of Wenzhou People’s Hospital.

Table 1. qRT-PCR primer sequences

Gene Primer (5'-3')

STK11 F: TTTGAGAACATCGGGAAGGG
R: CGGATGGAGAACCTCTTGG

B-actin F: CGTCACCAACTGGGACGACA

R: CTTCTCGCGGTTGGCCTTGG
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Cell culture

A549, H460, and H2030 cells carrying STK11 muta-
tion and the Calu-6 cells without STK11 mutation were
accessed from ATCC (USA). The H460 and H2030 cells
were cultured in RPMI-1640 complete medium with 10%
fetal bovine serum (FBS) and 1% penicillin-streptomycin
(P-S), the A549 cells were cultured in F-12K complete me-
dium with 10% FBS and 1% P-S, and Calu-6 cells were
maintained in MEM complete medium with 10% FBS and
1% P-S. According to the STK11 gene sequence, corre-
sponding sgRNA sequences were designed and inserted
into the eSpCas9-2A-GFP plasmid (GenScript, China).
Lipofectamine 3000 (Thermo Fisher, USA) was utilized to
transfect the plasmids into A549 and Calu-6 cells to con-
struct A5495TKIIRES and Calu6S™®!'! ¥P cell models, which
were respectively cultured in F-12K and MEM complete
medium with 10% FBS and 1% P-S at 37°C and 5% CO,.

Human PBMC cells were purchased from Zhejiang
MeisenCTCC. CD4* T cells were extracted from PBMC
using a negative isolation method with the Human CD4*
T Cell Isolation Kit (Thermo Fisher, USA) and stimulated
with 2.5 pg/ml CD3 and 2 pg/ml CD28 antibodies (Gib-
co, USA) for 48 h to induce activation. The constructed
Calu63™1 KD and Calu6S™! VT cells in a 1 : 10 ratio were
co-cultured with activated CD4* T cells in RPMI-1640
medium with 10% FBS and 1% P-S at routine condition.

qRT-PCR

A cell suspension of A549 (AS549STKITRES and AS549STKII
MUT) and Calu-6 (Calu65™!" XD and Calu63™!! WT) was col-
lected. Total RNA was extracted from cells with TRIzon
Reagent (Cwbio, China), and reverse transcription was
done with the Hifair II 1* Strand cDNA Synthesis Kit
(Yeasen, China). Using cDNA as the template, qRT-PCR
was completed using UltraSYBR Mixture (Cwbio, China)
and the ABI7500 system (Thermo Fisher Scientific, USA).
The total cDNA was obtained after multiple high-tem-
perature denaturation (95°C), low-temperature annealing
(60°C), and elongation. With B-actin as an internal ref-
erence gene, the 2-AACt method was used to determine
the relative expression level of STK11. Experiments were
repeated three times for each group. The primer sequences
are shown in Table 1.

Cell Counting Kit-8 assay

A549 (A549STKIIRES and A549STKIIMUTY and Calu-6
(Calu6ST™I KD and Calu6S™k!! WT) cell viabilities were mea-
sured with cell counting kit-8 (CCK-8; EZB-CKS, China).
A 100 pl cell suspension (5 x 10° cells) was added to each
well of a 96-well plate for culture in a cell culture incubator
for O h, 24 h, 48 h, 72 h and 96 h. The medium was replaced
with serum-free medium, and each well was supplemented
with 10 pl of CCK-8 solution, followed by 4 h of incu-
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bation. Finally, the OD value was assessed at 450 nm by
a microplate reader. Each group was tested in triplicate.

Colony formation assay

The A549 (A549STKIIRES and A549STKIIMUT) and Calu-6
(Calu6S™ ! KD and Calu6S™!" WT) cell suspension was dilut-
ed and seeded into a 6-well plate, with 500 cells per well,
and incubated in a 37°C, 5% CO, incubator for 14 days.
After rinsing twice with PBS, colonies were fixed with
75% ethanol for 15 min, stained with crystal violet, and
colonies with more than 50 cells were scored as viable col-
onies. The images of colonies were captured with a digital
camera. The experiment was done three times.

EDU assay

AS549 (A5495TKIIRES gnd AS549STKIIMUT) and Calu-6
(Calu6S™ ! KD and Calu6S™®!! WT) cells were seeded (5 x 10°
cells/well) in a 96-well plate and cultured until adherent.
The EDU cell proliferation detection kit (Ribobio, Chi-
na) was used. EDU solution was diluted to a certain ratio
with complete medium, and 100 pl was added to each well
of the 96-well plate. After washing with PBS, cells were
fixed with 4% paraformaldehyde for 30 min, stained with
glycine for 5 min, and then incubated with 0.5% Triton
X-100 for 5 min. After staining with Apollo for 30 min,
cells were incubated with 0.5% Triton X-100 again for
5 min. Then, 100 pl of 1X Hoechst 33342 reaction solution
was added to each well for DNA staining, and cells were
observed and photographed under a fluorescence micro-
scope (Leica DM 4000B, Germany).

Cytotoxicity assay

The cytotoxic effect of CD4* T cells on tumor cells
was assayed with an lactate dehydrogenase (LDH) cyto-
toxicity assay kit (Yeasen, China). Effector cells and target
cells were plated in a 96-well plate at a ratio of 10 : 1, and
different control groups were set up according to the in-
structions and experimental grouping. After incubation in
a cell culture incubator for 4 h, the supernatant of each
well was harvested and transferred to a new 96-well plate.
Reaction substrate was added and incubated for 30 min,
and the optical density value was assessed at 490 nm. Each
group was tested in triplicate.

Transwell assay

Transwell chambers (LABSELECT, China) were
placed in a 24-well plate. CD4* T cells were plated into
the upper chamber (1 x 10° cells/ml), and the supernatant
from the treated tumor cells or RPMI-1640 was added
to lower chamber. Chambers were incubated in a 37°C,
5% CO, incubator for 4 h, and migrated cells were collect-
ed and counted using a cell counting plate. Each group was
tested in triplicate. The migration index was calculated as:
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the number of migrated cells in the experimental group/
that in blank group (without chemotactic factors).

ELISA

We detected the content of the cytokines interferon y
(IFN-y), interleukin (IL)-2, and tumor necrosis factor o
(TNF-a) in the supernatant of tumor cells co-cultured with
CD4* T cells according to the instructions of the ELISA
kit manufacturer. Specifically, the supernatant from
the co-culture system was collected using the Human
IFN-y ELISA Kit (ab174443), Human IL-2 ELISA Kit
(ab270883), and Human TNF-o ELISA Kit (ab181421)
for detecting IFN-y, IL-2, and TNF-o.. All the above test
kits were purchased from Abcam (UK).

Immunohistochemistry (IHC)

The collected patient tumor tissue was dehydrated and
embedded in paraffin to prepare sections. After baking,
the sections were immersed in xylene I and II for 20 min
each to remove paraffin, and then hydrated in 100%, 95%,
85%, and 75% ethanol for 5 min each. Tissue was sub-
jected to antigen retrieval in EDTA solution, followed by
sealing of endogenous peroxidase with hydrogen peroxide
enzyme-blocking solution. After washing with PBS twice
for 5 min each time, the tissue was incubated with nor-
mal goat serum homologated with secondary antibody at
37°C for 30 min. Anti-STK11 (Proteintech, China) prima-
ry antibody was added, and the tissue was placed over-
night in a 4°C refrigerator. The next day, the sections were
washed with PBS twice for 5 min each time, incubated
with HRP-labeled goat anti-rabbit secondary antibody (Be-
yotime, China) for 30 min, and stained with DAB. Staining
results were observed under an optical microscope, and
ten fields (400x) containing positively stained cells were
randomly selected for analysis and the average value was
recorded for each section.

Immunofluorescence (IF)

Paraffin sections were dewaxed and hydrated as de-
scribed in step 2.10, followed by antigen retrieval and
blocking with normal goat serum. Sections were then incu-
bated with CD4 (Proteintech, China) primary antibody and
placed in a refrigerator at 4°C overnight. Following rinses
with PBS, sections were incubated with a fluorescently la-
beled secondary antibody (Alexa Fluor 488) (Bioss, China)
in the dark at 37°C for 30 min. DAPI was added for 5 min
of staining in the dark. After rinsing with PBS, sections
were sealed with an anti-fluorescence quenching sealing
agent and observed under a fluorescence microscope.

Data analysis

Data were presented as mean values + standard devia-
tion (mean +SD). Based on GraphPad Prism 8.0 software,
all data were statistically evaluated with at least three bio-
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logical replicates for every experiment. For comparisons be-
tween two individuals, the non-parametric Mann-Whitney
test was employed, and the non-parametric Kruskal-Wallis
test was used for comparisons between several individuals.
P < 0.05 was regarded as statistically significant.

Results

STK11 mutation drives LUAD progression

To further validate expression of STK11 in different
LUAD cells, we measured STK11 expression in A549,
H460, H2030 cells carrying STK11 mutation and Calu-6
cells without STK11 mutation. Compared with Calu-6
cells, STK11 expression in A549, H460, and H2030 cells
was significantly lower (p < 0.0001) (Fig. 1A), indicat-
ing a significant loss of STK11 expression in LUAD cells
with STK11 mutation. We then constructed A5495T!! RES
and Calu-65T%!1 KD ce]]l models to investigate the ef-
fect of STK11 mutation on LUAD. qRT-PCR revealed
that mRNA levels of STK11 were significantly lower in
AS5495TRIMUT cells than in AS49STKIIRES ce]ls (p = 0.0052)
(Fig. 1B). qRT-PCR revealed that mRNA levels of STK11
were significantly lower in Calu-65TK! KD cells than in
Calu-65TKIIWT cells (p = 0.0046) (Fig. 1C). CCK-8 assays
showed that the loss of the STK11 gene promoted the OD
value of A549STKIIMUT (5 = (0.0065) and Calu-65Tk!1 kP
(p = 0.0104) cells (Fig. 1D, E). Furthermore, the EDU
assays indicated that the proliferation ability of A5495TK!!
MUT (p = 0.0012) and Calu-65T™%'¥P (p = 0.0099) cells
was significantly enhanced (Fig. 1F, G). The colony
formation assays also indicated that the proliferation
ability of A549STRIIMUT (; = (0.0042) and Calu-65TK!! KD
(p =0.0224) cells was significantly enhanced (Fig. 1F, G).
These results suggested that STK11 mutation in LUAD
cells led to a decrease in STK11 expression and promoted
the malignant progression of LUAD.

STK11 mutation affects the CD4* T cell-
mediated Kkilling effect on LUAD cells

Studies have shown that LUAD patients with STK11
mutation have less immune cell infiltration, such as
B cells, CD8* T cells, CD4* T cells, macrophages, neutro-
phils, etc. [46]. To investigate the effect of CD4* T cells
on LUAD cells with STK11 mutation, we isolated CD4*
T cells from human PBMC cells, activated them, and
co-cultured them with STK11 mutant and wild-type LUAD
cell lines (Calu-65TK!' XD and Calu-65T%!" WT), Cell toxicity
and chemotaxis assays assessed killing ability and chemo-
taxis of CD4* T cells against LUAD cells. Compared with
Calu-65TK1'WT cells, the cytotoxicity of CD4* T cells against
Calu-65TKI KD cells was significantly lower (p = 0.0192),
and their chemotaxis ability was also significantly lower
(» =0.0085) (Fig. 2A, B). ELISA analysis of the cytokine
expression levels in the supernatant of CD4* T cells co-cul-
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tured with Calu-6 cells revealed a substantial decrease
in IFN-y (p = 0.0015), IL-2 (p = 0.0021), and TNF-a
(p =0.015) levels (Fig. 2C-E). Thus, STK11 mutation sub-
stantially reduced the killing ability of CD4* T cells against
LUAD cells.

STK11 mutation leads to decreased immune cell
infiltration in LUAD patients’ tumor tissues

To delineate the modulatory role of STK11 mutation
in the tumor microenvironment of LUAD, we evaluated
the levels of immune cell infiltration in clinical tissue
samples from patients with wild-type STK11 and mutant
LUAD. By performing IHC analysis to assess STK11 pro-
tein expression in different patient tumor tissues, we found
that STK11 protein expression in tumor tissues of STK11
mutant patients was substantially lower than that in tumor
tissues of wild-type STK11 patients (p <0.0001) (Fig. 3A).
IF analysis of CD4* T cell infiltration levels in tumor
tissues of STK11 wild-type and mutant LUAD patients
showed that CD4* T cell content was significantly lower
in tumor tissues of STK11 mutant patients compared to
that of STK11 wild-type patients (p < 0.0001) (Fig. 3B).
The analysis of clinical tissue samples from LUAD patients
revealed that STK11 mutation led to a decrease in immune
cell infiltration in tumor tissues, confirming the important
modulatory role of STK11 mutation in the tumor microen-
vironment of LUAD.

Discussion

Lung adenocarcinoma has a high mortality rate [47].
STK11 mutation is common in LUAD and is associated
with poor prognosis [48]. This study explored the potential
mechanism of the impact of STK11 mutation on LUAD
cells and tissues.

STK11 mutation is associated with lung cancer [49],
non-small cell lung cancer [50], hereditary pancreatic can-
cer [51], breast cancer [52], and LUAD [53]. It is worth
noting that LUAD can be caused by various genetic and
environmental factors, and STKI] gene mutations are
the commonest [13, 54]. Mutations in STK11 can lead to
uncontrolled cell growth and tumor formation [55, 56].
We first investigated the effect of STK1/ gene mutations
on tumor progression through gene knockout experiments
and found that STK11 mutation promotes the progres-
sion of A549 and Calu-6 cells, consistent with a report
published in APMIS in 2022 [55]. There are currently no
reports on whether STK11 mutation has a beneficial or
detrimental effect on the cell activity of CD4* T cells. This
study, through successive experiments, first demonstrated
that STK11 mutation inhibited the cell activity of CD4*
T cells in a co-culture system with Calu-6 cells.

Immune infiltration refers to the process by which
immune cell migrate from the blood to tissues or organs
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to resist foreign invaders (such as pathogens or cancer
cells). It plays a pivotal role in the immune system’s ca-
pacity to identify and react to foreign antigens, as well as
to maintain tissue homeostasis and prevent the develop-
ment of autoimmune diseases [57-60]. Previous studies
have shown through in vivo and in vitro experiments that
STK11 mutation significantly reduces infiltration levels
of NK cells, and inhibits their activity and chemotaxis, and
killing of LUAD cells, thereby promoting the progression
of LUAD [55]. In addition, a study published in Frontiers
in Oncology in 2020 showed that STK11 gene copy num-
ber is connected with immune cell infiltration, and the im-
mune cell infiltration levels of LUAD patients with STK11
mutation are much lower than those of the wild type [13].
Subsequently, we investigated the impact of STK11 mu-
tation on immune infiltration levels based on the collected
clinical samples and found that STK11 mutation signifi-
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cantly reduced the immune infiltration levels of CD4*
T cells in LUAD tissues, which is consistent with previous
research findings.

Based on the above discussion, we concluded that
STK11 mutation in LUAD tissues led to reduced infiltration
and activation of CD4* T cells, thereby promoting tumor
growth by producing an immune-suppressive microenvi-
ronment. The reduced activity of CD4* T cells observed
in tumors with STK11 mutation may represent an immune
evasion mechanism. This study revealed a mechanism by
which STK11 mutation modulated CD4* T cells and pro-
moted tumor progression, providing fresh insights into role
of STK11 mutation in LUAD and their effects on the im-
mune system. Future research needs to explore likely mech-
anisms by which STK11 mutation affects immune cell ac-
tivity and develop effective treatments for STK11 mutation
in LUAD.
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