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Abstract

Introduction: Pyroptosis can aggravate lung injury in sepsis. It has been reported that IncRNA
SNHG 16 can regulate the inflammatory response. However, the role and underlying mechanism
of SNHG 16 in sepsis-induced pyroptosis and lung injury remain unclear.

Material and methods: To mimic septic lung injury in vitro, cells were treated with 1 ug/ml LPS.
The Cell Counting Kit-8 (CCK-8) assay was performed to test cell viability. The lactate dehydrogenase
(LDH) level was detected using a commercial kit. Interleukin (IL)-18 and IL-1 secretion was tested using
ELISA. Pyroptosis was investigated via flow cytometry. The relationship among SNHG 16, miR-339-5p,
and NLR family pyrin domain containing 1 (NLRP1) was explored using the dual luciferase assay.

Results: LPS significantly upregulated the levels of SNHG16 and NLRPI in BEAS-2B cells. In
addition, LPS significantly induced pyroptosis in BEAS2B cells, while this phenomenon was reversed
by SNHG 16 silencing. SNHG16 could bind with miR-339-5p, and NLRP1 was found to be the down-
stream mRNA of miR-339-5p. SNHG 16 silencing significantly abolished the LPS-induced upregulation
of NLRP1 through miR-339-5p downregulation. The upregulation of miR-339-5p inhibited the pro-apop-
totic effect of LPS on BEAS-2B cells, which was abolished by NLRP1 overexpression. Furthermore,

the anti-pyroptotic effect of SNHG16 siRNA was abolished by NLRP1 upregulation.
Conclusions: SNHG16 silencing reversed LPS-induced pyroptosis in BEAS-2B cells via miR-339-
5p/NLRPI axis mediation. Our study might shed new light on exploring therapeutic strategies for

the treatment of septic lung injury.
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Introduction

Sepsis is usually induced by an imbalance between
infection and host responses [1]. Sepsis progression is
a global health burden due to the associated high mortality
[2]. According to previous reports, sepsis can progress to
acute lung injury (ALI) in approximately 40% of cases [3].
Though great efforts have been made in the study of sep-
sis-induced ALI, the outcomes still remain limited. Thus,
it is essential to discover effective strategies against septic
lung injury.

Pyroptosis, a subtype of programmed cell death, plays
an essential role in inflammation [4]. It is primarily trig-
gered by inflammasomes and executed by downstream
protease caspase-1 activation. Activated caspase-1 cleaved
the substrate protein gasdermin D (GSDMD) to release
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the membrane perforating activity of its N-terminal do-
main [5]. Moreover, caspase-1 mediates the maturation
and release of interleukin (IL)-1f and IL-18. Then, the ma-
ture IL-1f and IL-18 are secreted through the molecular
pore formed by GSDMD on the cell membrane, and they
play a pro-inflammatory physiological role [6]. In addition,
NLRP1 can promote pyroptosis through the mediation
of inflammatory factors (IL-18, etc.) and caspase-1 [7].
It has been illustrated that pyroptosis can rupture the plas-
ma membrane and lead to the release of inflammatory fac-
tors in sepsis [8, 9]. Thus, pyroptosis can act as a crucial
regulator in sepsis. Therefore, exploring novel pyroptosis
alleviation strategies in septic lung injury is necessary.
Long non-coding RNAs (IncRNAs) are a class of non-
coding RNA transcripts that are about 200 nucleotides
long [10], which are vital targets in various diseases
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[11, 12]. In addition, IncRNAs act as vital modulators
in the progression of septic lung injury. For instance,
CDKN2B-ASI1 could interact with LIN28B to attenuate
sepsis-induced ALI via HIF-10/NLRP3 pathway activa-
tion [13]. A recent report indicated that IncRNA NEAT1
regulated LPS-induced pyroptosis through ROCK1 medi-
ation [14]. Meanwhile, SNHG16 is involved in multiple
pulmonary diseases (pneumonia, lung cancer, etc.) [15,
16]. Nevertheless, the function of SNHG16 in sepsis-in-
duced ALI needs to be further explored.

MicroRNAs (miRNAs) can modulate mRNA expression
via mRNA degradation [17, 18]. MiRNAs are crucial me-
diators in various diseases, including sepsis [19, 20]. MiR-
339-5p often exerts a vital function in lung cancer and sep-
sis-induced kidney injury [21, 22]. Nevertheless, the detailed
function of miR-339-5p in sepsis-mediated ALI remains
unclear. LncRNAs can inhibit miRNA activity and mediate
mRNA levels as ceRNAs [23]. Database predictions indicat-
ed that SNHG16 and miR-339-5p, as well as miR-339-5p
and NLR family pyrin domain containing 1 (NLRP1), have
mutual binding sites. The above backgrounds suggest that
SNHG16 might regulate NLRP1 by targeting miR-339-5p,
thereby affecting pyroptosis in septic ALI.

Thus, it can be hypothesized that SNHG16 regulates
ALI progression induced by sepsis through miR-339-5p/
NLRP1 axis mediation. We hope the present study will
provide a new therapeutic target for septic ALI treatment.

Material and methods

Cell culture

Human bronchial epithelial cells (BEAS-2B) were
purchased from the American Type Culture Collection
(Manassas, VA, USA). They were maintained in DMEM
(Thermo Fisher Scientific, Waltham, MA, USA), supple-
mented with 10% FBS (Thermo Fisher Scientific) at 37°C
and 5% CO,. To mimic sepsis-induced ALI in vitro, cells
were supplemented with LPS (0.1, 1, and 10 pg/ml, Sigma,
St. Louis, MO, USA) for 24 h [24].

Cell transfection

BEAS-2B cells (3 x 10° per well) were transfected
with SNHG16 small-interfering RNAs (si-SNHG16),
negative control siRNA (si-NC), pcDNA3.1 (oe-NC), or
pcDNA3.1-NLRP1 (0oe-NLRP1). For miR-339-5p overex-
pression/downregulation, BEAS-2B cells were transfected
with miR-339-5p mimics/inhibitor. All the vectors were ob-
tained from GenePharma (Shanghai, China) and transfected
into cells using Lipofectamine 2000 (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s protocol [25].

RT-qPCR

Total RNA was extracted from cell lines (3 x 10°
per well) using TRIzol (TaKaRa, Tokyo, Japan). To de-
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tect mRNA levels, cDNA was synthesized using the Pri-
meScript RT kit (ELK biosciences, Wuhan, China). For
miRNAs, cDNA was synthesized using the First Strand
cDNA Synthesis Kit (ELK biosciences). Subsequently,
RT-qPCR was performed using the SYBR premix Ex
Tagq II kit (Takara). Real-time qPCRs were performed in
triplicate under the following protocol: 2 min at 94°C, fol-
lowed by 35 cycles (30 s at 94°C and 45 s at 55°C). For
mRNA, GAPDH was selected as a normalized control gene,
and U6 was selected as the internal control of miRNA.
The sequences for primers were as follows: SNHG16
F, 5'-CCCAAGCTTGCGTTCTTTTCGAGGTCGGC-3'
and R, 5'-CCGGAATT CTGACGGTAGTTTC-
CCAAGTT-3"; NLRP1 F, 5'-GCAGTGCTAATGCCCTG-
GAT-3" and R, 5'-GAGCTTGGTAGAGGAGTGAGG-3";
GAPDH F, 5'-GAGTCCACTGGCGTCTTCA-3' and
R, 5'-GGTCATGAGTCCTTCCACGA-3"; U6: F, 5'-CTC-
GCTTCGGCAGCACAT-3" and R, 5'-AACGCTTCAC-
GAATTTGCGT-3'. Data were quantified using the 2724
method.

Western blotting detection

Total protein was isolated from cells using the RIPA
buffer (Beyotime, Shanghai, China). Proteins were quan-
tified with the BCA kit (Beyotime). Subsequently, pro-
teins (40 pg per lane) were separated using SDS-PAGE
gel (10%) and then transferred to PVDF membranes (Be-
yotime). The membranes were incubated with primary
antibodies overnight at 4°C after being blocked with 10%
skim milk for 1 h. After that, membranes were incubat-
ed with HRP-conjugated secondary antibodies (ab6721,
1: 5000, Abcam, Cambridge, MA, USA) for 1 h. Finally,
membranes were scanned using the Odyssey Imaging
System. The antibodies were as follows: anti-NLRP1 (Ab-
cam, ab36852, 1 : 1000), anti-ASC (Abcam, ab283684,
1 : 1000), anti-cleaved caspase-1 (CST, MA, USA,
4199S, 1 : 1000), anti-cleaved gasdermin D (GSDMD;
CST, 364258, 1 : 1000), and anti-GAPDH (CST, 5174,
1: 1000).

Cell Counting Kit-8 assay

BEAS-2B cells (5 x 10° per well) were cultured over-
night. After 48 h of treatment, cells were treated with
Cell Counting Kit-8 (CCK-8) reagents (10 ul, C0037,
Beyotime) and further incubated at 37°C for 2 h. Finally,
cell absorbance was measured using a microplate reader
(450 nm, Invitrogen).

Lactate dehydrogenase detection

Cytotoxicity was measured using the lactate dehydro-
genase (LDH) kit (C0017; Beyotime). Cells (5 x 10%/well)
were seeded into 96-well cell culture plates. Then, the rel-
evant operations were carried out according to the instruc-
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tions of the kit. LDH levels were measured using a mi-
croreader at 490 nm (Invitrogen).

ELISA

The supernatants of BEAS-2B cells (5 x 10° cells per
well) were collected via centrifugation and then used to
investigate inflammatory factors. The levels of interleukin
(IL)-18 (RABO0543, Sigma) and IL-1f (900-K95, Thermo
Fisher Scientific) were investigated using ELISA Kkits.
Absorbance (450 nm) was detected using a microreader
(Invitrogen).

Cell pyroptosis detection

Pyroptosis was detected using the FAM-FLICA
Caspase-1 Kit (Sigma). In brief, cells were stained with
the caspase-1 probe for 1 h at 37°C and then stained with PI
for 10 min. Thereafter, the cells were analyzed using a flow
cytometer (Becton, Dickinson and Company, Franklin
Lake, NJ, USA). The percentage of caspase-1* and PI* cells
was calculated as the pyroptosis rate.

Dual luciferase reporter assay

Wild type (WT)/mutant (MUT) of SNHG16 and
3'-UTR of NLRP1 mRNA sequences containing miR-
339-5p binding sites were synthesized from GenePhar-
ma, after which they were cloned into pmirGLO vectors.
The SNHG16 (WT/MUT) or NLRP1 (WT/MUT) re-
combinant vector was transfected into cells together with
miR-339-5p mimics, miR-339-5p inhibitor, or their cor-
responding negative control (NC) vectors. The Dual-Glo
Luciferase Assay System (Promega, Madison, WI, USA)
was used to analyze luciferase activity.

Statistical analysis

All the results are presented as the mean + standard
deviation (n = 3), which were three separate experiments
performed in triplicate. Student’s #-test (only two groups)
or the one-way analysis of variance followed by Tukey’s
test (more than two groups) was used for comparisons.
P <0.05 was considered to indicate a significant difference.

Results

SNHG16 downregulation attenuated
LPS-induced pyroptosis

To mimic septic ALI in vitro, cells were treated with
0.1, 1, or 10 pg/ml LPS. As shown in Figure S1, LPS
could inhibit cell viability and increase IL-1p, IL-18,
and SNHGI16 levels in a dose-dependent manner. In ad-
dition, 1 pg/ml LPS had a significant effect on the levels
of IL-1pB, IL-18, and SNHG16, and it reduced cell viabil-
ity by about 50%. Consistently, the level of NLRP1 was
increased by 1 pg/ml LPS (Fig. 1A, B). To investigate
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the function of SNHG16 in septic ALI, cells were trans-
fected with SNHG16 siRNA. As expected, the SNHG16
level in BEAS-2B cells was decreased by SNHG16 siRNA
(Fig. 1C). LPS-upregulated SNHG16 was also decreased
by SNHG16 silencing (Fig. 1D). LPS greatly inhibited
cell viability and upregulated the level of LDH, which was
significantly reversed by SNHG16 siRNA (Fig. 1E, F).
Meanwhile, LPS greatly induced the secretion of IL-1p and
IL-18, while this phenomenon was abolished after SNHG16
knockdown (Fig. 1G). Moreover, LPS-induced NLRP1 up-
regulation was inhibited after SNHG16 siRNA treatment
(Fig. 1H, I). LPS significantly upregulated the expression
of pyroptotic proteins (ASC, cleaved caspase-1, and cleaved
GSDMD) and induced BEAS-2B cell pyroptosis; however,
the pro-pyroptotic effect of LPS was significantly attenu-
ated by SNHG16 downregulation (Fig. 11, J). In summary,
SNHG16 knockdown inhibited NLRP1 expression and at-
tenuated the pyroptotic effect of LPS.

SNHG16 positively regulated NLRP1 expression
through miR-339-5p sponging

Since IncRNAs have been widely reported to regulate
the expression of downstream genes through the ceRNA
mechanism, bioinformatics databases were used to predict
miRNAs with mutually binding sites to both SNHG16 and
NLRP1. As shown in Figure 2A, 6 miRNAs bound with
SNHG16 and NLRP1. Importantly, the miR-339-5p level
was downregulated the most by LPS in our pre-experiment
(Fig. S2). Since the changes of SNHG16, NLRP1, and miR-
339-5p levels in LPS-treated BEAS-2B cells were consis-
tent with the ceRNA mechanism, miR-339-5p was selected
as the major miRNA in our research. In addition, SNHG16
knockdown significantly increased miR-339-5p expression
(Fig. 2B). Meanwhile, the data revealed that the miR-339-
5p level in BEAS-2B cells was significantly increased by
miR-339-5p mimics but downregulated by miR-339-5p in-
hibition (Fig. 2C). Then, we constructed SNHG16 wild and
mutant type recombinant plasmids containing miR-339-5p
binding sites (Fig. 2D). The result showed that miR-339-5p
mimics negatively regulated the relative luciferase activity
in SNHG16 WT, and miR-339-5p inhibitors exerted the op-
posite effect, which was not observed in the SNHG16-MUT
group (Fig. 2E). The above result indicated that SNHG16
and miR-339-5p had a mutual binding relationship. Addi-
tionally, miR-339-5p could negatively regulate NLRP1 ex-
pression (Fig. 2F, G). We then predicted the binding sites
of miR-339-5p and NLRP1 mRNA using the starBase data-
base (Fig. 2H). Moreover, we verified the binding relation-
ship between miR-339-5p and NLRP1 mRNA using the dou-
ble luciferase reporter gene assay (Fig. 2I). Furthermore,
SNHG16 knockdown greatly upregulated the miR-339-5p
level, which was abolished by the miR-339-5p inhibitor
(Fig. 2J). Concurrently, the NLRP1 level was significantly
inhibited by SNHG16 silencing, while the effect of si-SN-
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Fig. 1. SNHG16 downregulation relieved LPS-induced pyroptosis. BEAS-2B cells were treated with LPS (1 pg/ml) for
24 h. A) The level of NLRP1 in BEAS-2B cells was detected by RT-qPCR. B) NLRP1 expression in BEAS-2B cells was
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B) The expression of miR-339-5p in BEAS-2B cells was
investigated by RT-qPCR after si-NC or si-SNHG16 trans-
fection. BEAS-2B cells were transfected with NC mim-
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2B cells was examined via RT-qPCR. D) The binding
sites among SNHG16 and miR-339-5p were tested by
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performed to investigate luciferase activity. F) NLRP1
expression in BEAS-2B cells was examined via RT-qPCR
and western blotting. n = 3 per group. p < 0.05,
“p<0.01, ™p < 0.001

Central European Journal of Immunology 2024; 49(4) 351




NLRP1

GAPDH

Hui Liu et al.

G

e e o e G

T s G —

H
miR-339-5p 3'-gcacucgaggaccuccUGUCCCu-5'
SNHG16 WT 5'-ccaugccagggaugccACAGGGg-3'
SNHG16 MUT 5'-ccaugccagggaugecUGUCCCg-3'
J *X%
4
. **%
S
2
2
R
%)
o
0
N
“ 2
&
=
o 1
&
R
]
~
0" 3 +0 +0 + ok
£ UZ © Z oS
= 7, = - = — .0
5] ) O3 ORE
© RS T = e
2 Z 2 Z "
= 2% % E

Fig. 2. Cont. G) NLRP1 expression in BEAS-2B cells
was examined via RT-qPCR and western blotting.
H) The binding sites between NLRP1 and miR-339-5p
were predicted by the starBase database. I) The dual lu-
ciferase assay was performed to measure luciferase ac-
tivity. Cells were treated with inhibitor NC + si-NC,
si-SNHG16 + NC inhibitor, or si-SNHG16 + miR-339-5p
inhibitor. J, K) Levels of miR-339-5p and NLRP1 were
examined via RT-qPCR. n = 3 per group. "p < 0.05,
“p <0.01, ™p <0.001

352

NLRP1/GAPDH ratio

]

Relative luciferase activity

=

Relative NLRP1 expression

0.8

*%
0.6 %
0.4 1
0.2
0- T o ;._‘I o
E gL "8 ss A8
E  EF JdE E© 43
O = = = g
& 8 =
g g
3
X¥¥ H Control
Mimics NC
M miR-339-5p mimics
Inhibitor NC
27 B miR-339-5p inhibitor
K ¥
1A T - T -

NLRP1 WT NLRP1 MUT
1.5 1
*¥%
1.0 1 *
T
0.5 1
0- T

Control

si-NC +
inhibitor NC

T
+U + ok
o Z ©'? S
-0 —_ O\ B
(GRS (GRS
T = g

Ha) =
Z= Z &
RE L E
7] 7]

Central European Journal of Immunology 2024; 49(4)



L
2 I—
- - L e—
Z
jant
[a)
[aW
<
Control si-NC + si-SNHG16 + si-SNHG16 +
inhibitor NC inhibitor NC ~ miR-339-5p
inhibitor

Fig. 2. Cont. L) NLRP1 expression in BEAS-2B cells was
tested by western blotting. n = 3 per group. p < 0.05,
“p <0.01, ™p < 0.001

HG16 was reduced by miR-339-5p downregulation
(Fig. 2K, L). To sum up, SNHG16 increased NLRP1 expres-
sion in BEAS-2B cells by binding with miR-339-5p.

MiR-339-5p downregulation reversed
the inhibitory effect of SNHG16 silencing on
the NLRP1 level in LPS-treated BEAS-2B cells

To verify the relationship between SNHG16 and miR-
339-5p, cells were transfected with si-SNHG16 or miR-
339-5p mimics. As shown in Figure 3A, B, LPS-induced
miR-339-5p downregulation in BEAS-2B cells was re-
versed by SNHG16 silencing or miR-339-5p mimics. In
contrast, LPS-upregulated NLRP1 was significantly at-
tenuated by miR-339-5p mimics (Fig. 3C, D). SNHG16
siRNA-mediated regulation of miR-339-5p and NLRP1
was significantly abolished by miR-339-5p inhibitor
(Fig. 3E-G). Taken together, SNHG16 increased the level
of NLRP1 through miR-339-5p downregulation in LPS-
induced BEAS-2B cells.

NLRP1 reversed miR-339-5p overexpression-
mediated pyroptosis inhibition in LPS-induced
BEAS-2B cells

Next, to investigate the function of miR-339-5p in
sepsis-induced ALI, BEAS-2B cells were transfected
with pcDNA3.1 NLRP1 (oe-NLRP1). As demonstrated in
Figure 4A, B, oe-NLRP1 significantly increased the lev-
el of NLRP1 in BEAS-2B cells, indicating that oe-NL-
RP1 was successfully transfected in cells. LPS-induced
NLRP1 activation was significantly relieved by miR-
339-5p mimics, which was reversed by NLRP1 overex-
pression (Fig. 4C, D). MiR-339-5p mimics significantly
reversed the effect of LPS on the viability and LDH level
of BEAS-2B cells, which was significantly abolished by
NLRP1 upregulation (Fig. 4E, F). Consistently, the in-
hibitory effect of miR-339-5p mimics on the secretion
of IL-18 and IL-1f was greatly offset after NLRP1 up-

Central European Journal of Immunology 2024; 49(4)

SNHG16 promotes BEAS-2B cell pyroptosis

0.8
*%
*%
s 067
=
=
g
< 04
9
y—
Ay
[~
o)
Z 02
0_
3 + + +a5
g o2 gLZ) o2
g Zs o5 o8z
© %3 T 5 ETE
2 Z = Z
= = =
= ZE ZE

regulation (Fig. 4G). Additionally, NLRP1 overexpression
greatly reversed the anti-pyroptotic effect of miR-339-5p
mimics on LPS-treated cells through facilitating ASC,
cleaved caspase-1, and cleaved GSDMD protein levels and
caspase-1 activity (Fig. 4H, I). In summary, miR-339-5p
ameliorated LPS-induced pyroptosis in BEAS-2B cells via
NLRP1 downregulation.

NLRP1 upregulation abolished SNHG16
knockdown-reduced pyroptosis

To further confirm the relationship between SNHG16
and NLRP1 in septic ALI, cells were co-transfected with
SNHG16 siRNA and oe-NLRP1. As indicated in Fig-
ure 5A, B, si-SNHG16-induced NLRP1 downregula-
tion was significantly rescued in the presence of oe-NL-
RP1. In addition, the inhibitory effect of si-SNHG16 on
LPS-induced cell injury was greatly abolished by NLRP1
upregulation (Fig. 5C, D). Consistently, NLRP1 overex-
pression reversed SNHG16 siRNA-inhibited inflammation
in LPS-treated BEAS-2B cells (Fig. 5E). Furthermore,
NLRP1 overexpression significantly abolished the an-
ti-pyroptotic effect of si-SNHG16 on LPS-treated BE-
AS-2B cells (Fig. 5F, G). Collectively, SNHG16 aggra-
vated LPS-induced BEAS-2B pyroptosis through NLRP1
upregulation.

Discussion

Sepsis, a condition induced by bacterial infection,
is associated with high mortality rates. Without proper
treatment, sepsis could cause multi-organ failure, tissue
damage, and death [26, 27]. As a frequent complication
of sepsis, ALI can lead to acute respiratory failure [28].
Therefore, it is essential to develop a therapeutic strategy
against septic ALI Pyroptosis can induce lung injury in
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ed with LPS, LPS + si-NC, or LPS + si-SNHG16. The lev-
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sepsis. For example, Liu et al. found that the downregu-
lation of STAT3 phosphorylation could inhibit pyropto-
sis to alleviate sepsis-induced ALI [29]; IncRNA NEAT1
regulated LPS-induced pyroptosis through ROCK1 medi-
ation [14]. In this study, we found that SNHG16 facilitated
LPS-induced bronchial epithelial cell pyroptosis through
miR-339-5p/NLRP1 axis mediation, and this study might
provide new evidence for increasing the clinical value
of SNHG16 in ALI (Fig. 6).

SNHG16 plays a crucial role in the pathogenesis
of inflammatory diseases. For instance, SNHG16 rescued

Central European Journal of Immunology 2024; 49(4)

the effects of miR-15a/16 on neonatal sepsis-induced
RAW?264.7 cell inflammation [30]. Also, a previous study
showed that SNHG16 downregulation attenuated the de-
velopment of sepsis-induced ALI through miR-128-3p/
HMGB3 axis regulation [31]. Our research further ex-
plored the mechanism by which SNHG16 regulated py-
roptosis in LPS-induced BEAS-2B cells. We found that
SNHG16 silencing reversed the promoting effect of LPS
on pyroptosis. To the best of our knowledge, this study is
the first to demonstrate the function of SNHG16 in pyro-
ptosis during the pathogenesis of septic ALI.

355



Hui Liu et al.

>
=

*%¥%
4 -
£ 5
£ 3 z
=
5
2
=i 2
V4
2 z
g a
Z 19 3
O -
Control oe-NC oe-NLRP1
C *¥¥% .
44 *¥¥* b=
S
= =
=]
4 *%% g
s &
= =
= 24 z
V4
g _——
£
RN
Control oe-NC oe-NLRP1
o D
E £ 252 2732 2755
=P R-E5 FR-E5 =R e v -
=2 0 [}
S £7 T9E° 7387 -
B g T8 Z
= I-II'I SEp—p— |
o)
& '
= '
@)
10 1 R¥¥ x¥xx _FTFF
e 0.8 1
Fig. 4. NLRP1 reversed miR-339-5p overexpression-medi- &
ated pyroptosis inhibition in LPS-induced BEAS-2B cells. E 0.6 -
A, B) The overexpression effect of NLRP1 was tested = I
by RT-qPCR and western blotting after transfection with %
0e-NLRP1. BEAS-2B cells were exposed to LPS, LPS & 047
+ mimics NC + pcDNA3.1, LPS + miR-339-5p mimics E
+ pcDNA3.1, or LPS + miR-339-5p mimics + pcDNA3.1- 02
NLRP1. C, D) NLRP1 levels in BEAS-2B cells were test-
ed by RT-qPCR and western blotting. n = 3 per group.
< 0.05, "p <0.01, **p < 0.001 L £ +0U tatQ tats
£ 9 B%% 238% 248
5 Sgd HBES SRES
E+ & 2 E'g
& E E °©

356 Central European Journal of Immunology 2024; 49(4)



SNHG16 promotes BEAS-2B cell pyroptosis

E 150
EVEVRYS *KX%
*¥%
S 1004
z T
;—'.a
[}
=
3 50-
O_
3 n +00 +94+0 + o+ —
= & NnZZ pl 9z m"?g&
: YRS Fts =
S 2o 2w EC ‘?EZ
E+ xE % Eg
& E E °
G *¥¥ *¥¥%
400 —
300 A * %%
E -
)
7
=200 -
=
Ll
100 A
0_
= 72} +00 +2+0 + o+~
£ = NnZZ p'l g Z m"?ga
g BRod BXRAE 9 XRES
O 2o HHES HBED
E+ xE & Eg
& E E

XXX * KK
*%
2
S 2
[
=
5
g T
EEE
~
0_
= 1% +O0U + 2 +0 + o+ —
£ & 9ZzZ 0% 57 0955
: SEPR-EE PAES
3 20 "W EC JHEDR
E+ xE % Eg
& E E
* KKk
400 *¥¥ E—
300
’g *%*
)
&
2200
]
Ll
T
100
0_
3 %) +00 +2+0 + o+ —
£ & NnZ2Z nl ez m".’ga
2 235 B2t £a i
) 90 @_go ".‘EZ
E+ xE % E'g
E E E

Fig. 4. Cont. E) BEAS-2B cell viability was assessed by the CCK-8 assay. F) LDH release was tested using the LDH
kit. G) IL-18 and IL-1f levels in cell supernatants were tested by ELISA. n = 3 per group. “p < 0.05,

“p <0.01, "p <0.001

At present, reports of SNHG16 in the clinical study
of sepsis are scarce and not in-depth enough. Zhang et al.
found that a higher SNHG16 level was associated with
a lower incidence of acute respiratory distress syndrome
(ARDS) at the clinical level [32], which seems to differ
from the findings of our study. Our findings and those
of other researchers suggested that SNHG16 plays a pro-
moting role in sepsis-induced ALI and the inflammatory
response [33-35]. For example, Zhang et al. found that
SNHG16 was highly expressed in acute pneumonia and
LPS-induced human fibroblasts (WI-38), and SNHG16
could induce apoptosis and inflammatory injury in
LPS-treated A549 cells by targeting the miR-370-3p/IGF2

Central European Journal of Immunology 2024; 49(4)

axis [35]. Xia et al. suggested that SNHG16 knockdown
could reverse LPS-induced apoptosis, autophagy, and in-
flammatory responses in WI-38 cells [34]. ALI and ARDS
have similar pathophysiologic changes, and severe ALI, or
the final severe stage of ALI is defined as ARDS. The cur-
rent discrepancy in results among existing studies may be
related to various factors, such as cell types and disease
severity, which need to be further deciphered and differen-
tiated by more studies.

MiRNAs participate in sepsis-induced ALI progres-
sion. Shen et al. reported that miR-125b-5p inhibited
the ferroptosis of pulmonary microvascular endothelial
cells through regulating the Keap1/Nrf2/GPX4 axis in
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septic lung injury [36]; circ_0001498 could aggravate
LPS-induced inflammation in septic ALI by interacting
with miR-574-5p [37]. Meanwhile, miR-339-5p par-
ticipated in the progression of cancer and inflammatory
diseases [38, 39]. Notably, miR-339-5p participated in
the pathogenesis of the LPS-induced inflammatory re-
sponse in RAW?264.7 cells [21]. The present study demon-
strated that miR-339-5p was sponged by SNHG16 and
directly targeted NLRP1 mRNA. In addition, miR-339-

Central European Journal of Immunology 2024; 49(4)

5p inhibited LPS-induced BEAS-2B cell pyroptosis,
and NLRP1 overexpression reversed this phenomenon.
This study demonstrated that SNHG16 could positive-
ly regulate NLRP1 expression through interactions with
miR-339-5p, thus mediating LPS-induced pyroptosis in
BEAS-2B cells.

NOD-like receptor protein 1 (NLRP1), which belongs
to the NOD-like receptor family, is considered a cru-
cial inflammasome [40]. NLRP1 serves as an important
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modulator in pyroptosis. As evidence, NLRP1 promoted
pyroptosis by binding to miR-637 during vascular endo-
thelial injury, and it induced neuronal pyroptosis through
STING/IRElalpha pathway mediation after traumatic
brain injury in mice [41, 42]. A previous study suggested
that NLRP1 is an important risk factor for sepsis [43], and
it could promote septic lung injury [44]. Consistently, our
findings revealed that NLRP1 overexpression abolished
the anti-pyroptotic effect of SNHG16 siRNA during sep-

362

tic ALI progression. These findings implied that SNHG16
silencing could reverse LPS-induced pyroptosis through
miR-339-5p/NLRP1 axis mediation.

Nevertheless, this study had several limitations, includ-
ing the following: 1) other downstream targets of SNHG16
in sepsis-induced ALI remain unexplored; 2) there were no
animal studies to further assess the impact of SNHG16 in
sepsis-induced ALI. Hence, more investigations are needed
in the future.
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