1. Shi C, Zhao Y, Li Q, et al. (2021): lncRNA SNHG14 plays a role in sepsis-induced acute kidney injury by regulating miR-93. Mediators Inflamm 2021: 5318369.
2.
Hoste EAJ, Bagshaw SM, Bellomo R, et al. (2015): Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41: 1411-1423.
3.
Yang S, Ye Z, Chen W, et al. (2024): BMAL1 alleviates sepsis-induced AKI by inhibiting ferroptosis. Int Immunopharmacol 142: 113159.
4.
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. (2019): Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96: 1083-1099.
5.
Verma S, Kellum JA (2021): Defining acute kidney injury. Crit Care Clin 37: 251-266.
6.
Molinari L, Heskia F, Peerapornratana S, et al. (2021): Limiting acute kidney injury progression in sepsis: study protocol and trial simulation. Crit Care Med 49: 1706-1716.
7.
Chawla LS, Amdur RL, Amodeo S, et al. (2011): The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 79: 1361-1369.
8.
Jiang ZJ, Zhang MY, Fan ZW, et al. (2019): Influence of lnc-RNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. Eur Rev Med Pharmacol Sci 23: 3512-3519.
9.
Zhang X, Huang Z, Wang Y, et al. (2021): Long non-coding RNA RMRP contributes to sepsis-induced acute kidney injury. Yonsei Med J 62: 262-273.
10.
Li H, Duan J, Zhang T, et al. (2024): miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis. Ren Fail 46: 2322688.
11.
Ge J, Zhang X, Liu Y, et al. (2024): miR-874-3p is identified as a biomarker for acute kidney injury and mediates disease development via targeting MSRB3. Nephron 148: 426-436.
12.
Yang N, Yan N, Bai Z, et al. (2024): FTO attenuates LPS-induced acute kidney injury by inhibiting autophagy via regulating SNHG14/miR-373-3p/ATG7 axis. Int Immunopharmacol 128: 111483.
13.
Fazaeli H, Sheikholeslami A, Ghasemian F, et al. (2023): The emerging role of lncRNA FENDRR in multiple cancers: a review. Curr Mol Med 23: 606-629.
14.
Tawfick A, Matboli M, Shamloul S, et al. (2022): Predictive urinary RNA biomarkers of kidney injury after extracorporeal shock wave lithotripsy. World J Urol 40: 1561-1567.
15.
Cheng L, Nan C, Kang L, et al. (2020): Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis. J Transl Med 18: 217.
16.
Liang H, Yu T, Han Y, et al. (2018): LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 17: 119.
17.
Yang JJ, Wu BB, Han F, et al. (2020): Gene expression profiling of sepsis-associated acute kidney injury. Exp Ther Med 20: 34.
18.
Huang W, Wu X, Xue Y, et al. (2021): MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-B signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol 324: 152-164.
19.
Singer M, Deutschman CS, Seymour CW, et al. (2016): The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315: 801-810.
20.
Khwaja A (2012): KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120: c179-184.
21.
Li YM, Zhang J, Su LJ, et al. (2019): Downregulation of TIMP2 attenuates sepsis-induced AKI through the NF-b pathway. Biochim Biophys Acta Mol Basis Dis 1865: 558-569.
22.
Fan H, Le JW, Sun M, et al. (2021): Pretreatment with S-nitrosoglutathione attenuates septic acute kidney injury in rats by inhibiting inflammation, oxidation, and apoptosis. Biomed Res Int 2021: 6678165.
23.
Fan H, Le JW, Zhu JH (2020): Protective effect of N-acetylcysteine pretreatment on acute kidney injury in septic rats. J Surg Res 254: 125-134.
24.
Li W, Liu J, Zhao H (2020): Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma. Aging (Albany NY) 12: 1512-1526.
25.
Ahmadirad H, Pourghadamyari H, Hadizadeh M, et al. (2024): Differential expression of long non-coding RNAs in colon cancer: Insights from transcriptomic analysis. Pathol Res Pract 261: 155477.
26.
Si Y, Sun B, Huang Y, et al. (2024): Predictive value of red cell distribution width-to-platelet ratio combined with procalcitonin in 28-day mortality for patients with sepsis. Crit Care Res Pract 2024: 9964992.
27.
Zhu W, Ou Y, Wang C, et al. (2024): A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 10: e29366.
28.
Ates HC, Alshanawani A, Hagel S, et al. (2024): Unraveling the impact of therapeutic drug monitoring via machine learning for patients with sepsis. Cell Rep Med 101681.
29.
Chen Q, Zhan H, Chen J, et al. (2024): Predictive value of lactate/albumin ratio for death and multiple organ dysfunction syndrome in patients with sepsis. J Med Biochem 43: 617-625.
30.
Zhou X, He Y, Hu L, et al. (2022): Lactate level and lactate clearance for acute kidney injury prediction among patients admitted with ST-segment elevation myocardial infarction: A retrospective cohort study. Front Cardiovasc Med 9: 930202.
31.
Monard C, Rimmelé T, Blanc E, et al. (2023): Economic burden of in-hospital AKI: a one-year analysis of the nationwide French hospital discharge database. BMC Nephrol 24: 343.
32.
Wang L, Cao QM (2022): Long non-coding RNA XIST alleviates sepsis-induced acute kidney injury through inhibiting inflammation and cell apoptosis via regulating miR-155-5p/WWC1 axis. Kaohsiung J Med Sci 38: 6-17.
33.
Deng LT, Wang QL, Yu C, et al. (2021): lncRNA PVT1 modulates NLRP3‑mediated pyroptosis in septic acute kidney injury by targeting miR‑20a‑5p. Mol Med Rep 23: 271.
34.
Xu L, Hu G, Xing P, et al. (2020): Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci 262: 118505.
35.
Pietrukaniec M, Migacz M, Żak-Gołąb A, et al. (2020): Could KIM-1 and NGAL levels predict acute kidney injury after paracentesis? – preliminary study. Ren Fail 42: 853-859.
36.
Ren GL, Zhu J, Li J, et al. (2019): Noncoding RNAs in acute kidney injury. J Cell Physiol 234: 2266-2276.
37.
Pan T, Jia P, Chen N, et al (2019): Delayed remote ischemic preconditioning ConfersRenoprotection against septic acute kidney injury via exosomal miR-21. Theranostics 9: 405-423.
38.
Wang M, Wei J, Shang F, et al. (2020): Long non‑coding RNA CASC2 ameliorates sepsis‑induced acute kidney injury by regulating the miR‑155 and NF‑B pathway. Int J Mol Med 45: 1554-1562.
39.
Wang J, Chen J, Li Z, et al. (2024): The negative feedback loop of NF-B/miR-202-5p/HMGB2 attenuates sepsis induced acute kidney injury. Int Immunopharmacol 142: 113050.