1. Galli SJ, Tsai M, Piliponsky AM (2008): The development of allergic inflammation. Nature 454: 445-454.
2.
Wheatley LM, Togias A (2015): Clinical practice. Allergic rhinitis. N Engl J Med 372: 456-463.
3.
Bédard A, Sofiev M, Arnavielhe S, et al. (2020): Interactions between air pollution and pollen season for rhinitis using mobile technology: A MASK-POLLAR Study. J Allergy Clin Immunol Pract 8: 1063-1073.e4.
4.
Papapostolou G, Kiotseridis H, Romberg K, et al. (2021): Cognitive dysfunction and quality of life during pollen season in children with seasonal allergic rhinitis. Pediatr Allergy Immunol 32: 67-76.
5.
Taylor JA, Karas JL, Ram MK, et al. (1995): Activation of the high-affinity immunoglobulin E receptor Fc epsilon RI in RBL-2H3 cells is inhibited by Syk SH2 domains. Mol Cell Biol 15: 4149-4157.
6.
Shamji MH, Sharif H, Layhadi JA, et al. (2022): Diverse immune mechanisms of allergen immunotherapy for allergic rhinitis with and without asthma. J Allergy Clin Immunol 149: 791-801.
7.
Li Y, Leung PSC, Gershwin ME, Song J (2022): New mechanistic advances in FcRI-mast cell–mediated allergic signaling. Clin Rev Allergy Immunol 63: 431-446.
8.
McNeil BD, Pundir P, Meeker S, et al. (2015): Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519: 237-241.
9.
Wang XZ, Xia L, Zhang XY, et al. (2022): The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed Pharmacother 149: 112800.
10.
Liu HQ, Zhang WY, Luo XT, et al. (2006): Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148: 314-325.
11.
Peng W, Chen Y, Tumilty S, et al. (2022): Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca2+ and ROS homeostasis. Curr Opin Pharmacol 62: 97-102.
12.
Tang M, Chen M, Li Q (2021): Paeoniflorin ameliorates chronic stress-induced depression-like behavior in mice model by affecting ERK1/2 pathway. Bioengineered 12: 11329-11341.
13.
Lei C, Chen Z, Fan L, et al. (2022): Integrating metabolomics and network analysis for exploring the mechanism underlying the antidepressant activity of paeoniflorin in rats with CUMS-induced depression. Front Pharmacol 13: 904190.
14.
Wang XL, Wang YT, Guo ZY, et al. (2022): Efficacy of paeoniflorin on models of depression: A systematic review and meta-analysis of rodent studies. J Ethnopharmacol 290: 115067.
15.
Li PP, Liu DD, Liu YJ, et al. (2012): BAFF/BAFF-R involved in antibodies production of rats with collagen-induced arthritis via PI3K-Akt-mTOR signaling and the regulation of paeoniflorin. J Ethnopharmacol 141: 290-300.
16.
Shou Q, Jin L, Lang J, et al. (2018): Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying paeoniflorin for the treatment of allergic asthma. Front Pharmacol 9: 1531.
17.
Yang H, Song L, Sun B, et al. (2021): Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 12: 100139.
18.
Zhang L, Wei W (2020): Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther 207: 107452.
19.
Zhao Y, Li X, Chu J, et al. (2021): Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation in vitro and vivo. Food Funct 12: 7448-7468.
20.
Morante-Palacios O, Lorente-Sorolla C, Ciudad L, et al. (2021): JAK2-STAT epigenetically regulates tolerized genes in monocytes in the first encounter with gram-negative bacterial endotoxins in sepsis. Front Immunol 12: 734652.
21.
Zhang Q, Peng W, Wei S, et al. (2019): Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type II collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed Pharmacother 118: 109367.
22.
He L, Du J, Chen Y, et al. (2019): Renin-angiotensin system promotes colonic inflammation by inducing T(H)17 activation via JAK2/STAT pathway. Am J Physiol Gastrointest Liver Physiol 316: G774-G784.
23.
Shi Z, Jiang W, Wang M, et al. (2017): Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem 430: 161-169.
24.
Li A, Zhao F, Zhao Y, et al. (2021): ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci 275: 119356.
25.
Marok R, Winyard PG, Coumbe A, et al. (1996): Activation of the transcription factor nuclear factor-kappaB in human inflamed synovial tissue. Arthritis Rheum 39: 583-591.
26.
Viatour P, Merville MP, Bours V, Chariot A (2005): Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30: 43-52.
27.
Decout A, Katz JD, Venkatraman S, Ablasser A (2021): The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21: 548-569.
28.
McNeil BD, Pundir P, Meeker S, et al. (2015): Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature (London) 519: 237-241.
29.
Reite OB (1972): Comparative physiology of histamine. Physiol Rev 52: 778.
30.
Howarth PH, Salagean M, Dokic D (2000): Allergic rhinitis: not purely a histamine-related disease. Allergy 55: 7-16.
31.
Steelant B, Seys SF, Van Gerven L, et al. (2018): Histamine and T helper cytokine–driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol 141: 951-963.e8.
32.
Wernersson S, Pejler G, Sveriges L (2014): Mast cell secretory granules: armed for battle. Nat Rev Immunol 14: 478-494.
33.
Cheong H, Ryu SY, Kim KM (1999): Anti-allergic action of resveratrol and related hydroxystilbenes. Planta Med 65: 266-268.
34.
Kang B, Kim M, Lee S, et al. (2019): Nothofagin suppresses mast cell-mediated allergic inflammation. Chem Biol Interact 298: 1-7.
35.
Wu X, Qi X, Wang J, et al. (2021): Paeoniflorin attenuates the allergic contact dermatitis response via inhibiting the IFN- production and the NF-B/IB signaling pathway in T lymphocytes. Int Immunopharmacol 96: 107687-107687.
36.
Guo J, Peng L, Zeng J, et al. (2021): Paeoniflorin suppresses allergic and inflammatory responses by promoting autophagy in rats with urticaria. Exp Ther Med 21: 590.
37.
Wang C, Yuan J, Wu H, et al. (2013): Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflamm Res 62: 1035-1044.
38.
Sun J, Wu J, Xu C, et al. (2015): Paeoniflorin attenuates allergic inflammation in asthmatic mice. Int Immunopharmacol 24: 88-94.
39.
Koopmans T, Anaparti V, Castro-Piedras I, et al. (2014): Ca2+ handling and sensitivity in airway smooth muscle: Emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 29: 108-120.
40.
Wang J, Zhang Y, Wang J, et al. (2020): Paeoniflorin inhibits MRGPRX2-mediated pseudo-allergic reaction via calcium signaling pathway. Phytother Res 34: 401-408.
41.
Wang Y, Luo J, Alu A, et al. (2020): cGAS-STING pathway in cancer biotherapy. Mol Cancer 19: 136.
42.
Jiang M, Chen P, Wang L, et al. (2020): cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol 13: 81.
43.
Zierhut C, Yamaguchi N, Paredes M, et al. (2019): The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178: 302-315.e23.
44.
Brault M, Olsen TM, Martinez J, et al. (2018): Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J Immunol 200: 2748-2756.
45.
Tang CA, Zundell JA, Ranatunga S, et al. (2016): Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76: 2137-2152.
46.
Wang G, Cheng N (2018): Paeoniflorin inhibits mast cell-mediated allergic inflammation in allergic rhinitis. J Cell Biochem 119: 8636-8642.