1. Schneider JL, Rowe JH, Garcia-de-Alba C, et al. (2021): The aging lung: Physiology, disease, and immunity. Cell 184: 1990-2019.
2.
Garbi N, Lambrecht BN (2017): Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch 469: 561-572.
3.
Schworer SA, Moran TP (2024): Pulmonary interstitial macrophages stimulate regulatory T-cell responses. Am J Respir Cell Mol Biol 70: 429-430.
4.
Evren E, Ringqvist E, Willinger T (2020): Origin and ontogeny of lung macrophages: from mice to humans. Immunology 160: 126-138.
5.
Joshi N, Walter JM, Misharin AV (2018): Alveolar macrophages. Cell Immunol 330: 86-90.
6.
Bissonnette EY, Lauzon-Joset JF, Debley JS, et al. (2020): Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis. Front Immunol 11: 583042.
7.
Westphalen K, Gusarova GA, Islam MN, et al. (2014): Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506: 503-506.
8.
Aegerter H, Lambrecht BN, Jakubzick CV (2022): Biology of lung macrophages in health and disease. Immunity 55: 1564-1580.
9.
Guilliams M, De Kleer I, Henri S, et al. (2013): Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210: 1977-1992.
10.
Whitsett JA, Alenghat T (2015): Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 16: 27-35.
11.
Yu X, Buttgereit A, Lelios I, et al. (2017): The Cytokine TGF- promotes the development and homeostasis of alveolar macrophages. Immunity 47: 903-912.e4.
12.
Sapudom J, Karaman S, Mohamed WKE, et al. (2021): 3D in vitro M2 macrophage model to mimic modulation of tissue repair. NPJ Regen Med 6: 83.
13.
Tu GW, Ren YH, Shi Y, et al. (2017): Alveolar macrophage subtypes and acute lung injury. J Clin Med China 24: 470-475.
14.
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. (2018): Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233: 6425-6440.
15.
Mantovani A, Sica A, Sozzani S, et al. (2004): The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677-686.
16.
Mosser DM, Edwards JP (2008): Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958-969.
17.
Gu Y, Lawrence T, Mohamed R, et al. (2022): The emerging roles of interstitial macrophages in pulmonary fibrosis: A perspective from scRNA-seq analyses. Front Immunol 13: 923235.
18.
Ardain A, Marakalala MJ, Leslie A (2020): Tissue-resident innate immunity in the lung. Immunology 159: 245-256.
19.
Ural BB, Yeung ST, Damani-Yokota P, et al. (2020): Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci Immunol 5: eaax8756.
20.
Spagnolo P, Kaner RJ, Raghu G (2025): Genomic classifier for usual interstitial pneumonia combined with bronchoalveolar lavage cellular profile: potential use in the clinical management of new onset ILD? Eur Respir J 65: 2500151.
21.
Liegeois M, Legrand C, Desmet CJ, et al. (2018): The interstitial macrophage: A long-neglected piece in the puzzle of lung immunity. Cell Immunol 330: 91-96.
22.
Gibbings SL, Thomas SM, Atif SM, et al. (2017): Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol 57: 66-76.
23.
Schyns J, Bureau F, Marichal T (2018): Lung interstitial macrophages: Past, present, and future. J Immunol Res 2018: 5160794.
24.
Malla S, Sajeevan KA, Acharya B, et al. (2024): Dissecting metabolic landscape of alveolar macrophage. Sci Rep 14: 30383.
25.
Chen S, Saeed A, Liu Q, et al. (2023): Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 8: 207.
26.
Frafjord A, Skarshaug R, Hammarström C, et al. (2020): Antibody combinations for optimized staining of macrophages in human lung tumours. Scand J Immunol 92: e12889.
27.
Lu Q, Wang L, Li SS, et al. (2020): Progress on the mechanism of macrophage phenotype polarization. J Chin Pharm 31: 1915-1920.
28.
Zheng X, Wang HY (2017): Progress in M2 type macrophage polarization and related diseases. J Life Sci 29: 883-890.
29.
Sefik E, Qu R, Junqueira C, et al. (2022): Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 606: 585-593.
30.
Pi DN, Mo BW (2023): Progress in studying M2 type macrophages in pulmonary fibrosis. J N Clin Med China 16: 291-294.
31.
Sabatel C, Radermecker C, Fievez L, et al. (2017): Exposure to bacterial CpG DNA protects from airway allergic inflammation by expanding regulatory lung interstitial macrophages. Immunity 46: 457-473.
32.
Kawano H, Kayama H, Nakama T, et al. (2016): IL-10-producing lung interstitial macrophages prevent neutrophilic asthma. Int Immunol 28: 489-501.
33.
Shi T, Denney L, An H, et al. (2021): Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J Leukoc Biol 110: 107-114.
34.
Toussaint M, Fievez L, Drion PV, et al. (2013): Myeloid hypoxia-inducible factor 1 prevents airway allergy in mice through macrophage-mediated immunoregulation. Mucosal Immunol 6: 485-497.
35.
Dang W, Tao Y, Xu X, et al. (2022): The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 71: 1417-1432.
36.
Ran LY, Li Q, Wang FL (2023): Role of lung macrophages in lung injury repair and regeneration. J Biomed Transform 4: 21-24.
37.
Woo YD, Jeong D, Chung DH (2021): Development and functions of alveolar macrophages. Mol Cells 44: 292-300.
38.
Fadok VA, Bratton DL, Konowal A, et al. (1998): Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101: 890-898.
39.
Ge Z, Chen Y, Ma L, et al. (2024): Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 15: 1444964.
40.
Bahram Yazdroudi F, Malek A (2025): Reducing M2 macrophage in lung fibrosis by controlling anti-M1 agent. Sci Rep 15: 4120.
41.
Lucas R, Czikora I, Sridhar S, et al. (2013): Arginase 1: an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury. Front Immunol 4: 228.
42.
Tang L, Zhang H, Wang C, et al. (2017): M2A and M2C Macrophage subsets ameliorate inflammation and fibroproliferation in acute lung injury through interleukin 10 pathway. Shock 48: 119-129.
43.
Rath M, Müller I, Kropf P, et al. (2014): Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front Immunol 5: 532.
44.
Hung LY, Sen D, Oniskey TK, et al. (2019): Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunol 12: 64-76.
45.
Zhang C, Pu X, Su J, et al. (2023): Progress in the mechanism of alveolar macrophage-induced immune response on inflammatory injury of lung tissue. J Basic Med Clin Pract 43: 1585-1589.
46.
Wang T, Zhang J, Wang Y, et al. (2023): Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs. Nat Immunol 24: 423-438.
47.
Thompson BT, Chambers RC, Liu KD (2017): Acute respiratory distress syndrome. N Engl J Med 377: 562-572.
48.
MacCallum NS, Evans TW (2005): Epidemiology of acute lung injury. Curr Opin Crit Care 11: 43-49.
49.
Calfee CS, Delucchi KL, Sinha P, et al. (2018): Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 6: 691-698.
50.
Zeng L, Zhang J, Song R, et al. (2025): Laminarin alleviates acute lung injury induced by LPS through inhibition of M1 macrophage polarisation. J Cell Mol Med 29: e70440.
51.
Chen JY, Liang ZX (2021): Progress in the mechanism of mesenchymal stem cells in the treatment of acute respiratory distress syndrome. J PLA Med Coll 42: 353-357.
52.
Britt RD, Jr., Ruwanpathirana A, Ford ML, et al. (2023): Macrophages orchestrate airway inflammation, remodeling, and resolution in asthma. Int J Mol Sci 24: 10451.
53.
Joshi N, Watanabe S, Verma R, et al. (2020): A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J 55: 1900646.
54.
Aran D, Looney AP, Liu L, et al. (2019): Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20: 163-172.
55.
Latayan J, Akkenapally SV, Madala SK (2021): Emerging concepts in cytokine regulation of airway remodeling in asthma. Immunol Rev 2025; 330: e70020.
56.
Ogulur I, Pat Y, Ardicli O, et al. (2021): Advances and highlights in biomarkers of allergic diseases. Allergy 76: 3659-3686.
57.
Chen DD, Chen RC, Qiu C (2021): Highlights of a European Respiratory Society/American Thoracic Society guideline for management of severe asthma (Revised Edition 2020). Zhonghua Jie He He Hu Xi Za Zhi 44: 206-212.
58.
Yan X, Zhang JY, He RZ (2017): Role and progress of macrophages in bronchial asthma. Intern Respir J 37: 379-382.
59.
Wei P, Li LQ, Wu P, et al. (2018): Progress in the study of epithelial interstitial transformation and airway remodeling in asthma. J Bull Chin Pharmacol 34: 600-603.
60.
Baßler K, Fujii W, Kapellos TS, et al. (2022): Alveolar macrophages in early stage COPD show functional deviations with properties of impaired immune activation. Front Immunol 13: 917232.
61.
Li X, Zhang H, Chi X, et al. (2025): Advances on the role of lung macrophages in the pathogenesis of chronic obstructive pulmonary disease in the era of single-cell genomics. Int J Med Sci 22: 298-308.
62.
Barnes PJ (2000): Chronic obstructive pulmonary disease. N Engl J Med 343: 269-280.
63.
Stoll P, Wuertemberger U, Bratke K, et al. (2012): Stage-dependent association of BDNF and TGF-1 with lung function in stable COPD. Respir Res 13: 116.
64.
Zeng ZH, Chen Y, Long YJ (2022): Progress in eosinophilic chronic obstructive pulmonary disease. J Tuberculosis Lung Dis 3: 50-54.
65.
Kandemir Y, Dogan N, Yaka E, et al. (2021): Clinical characteristics of neutrophilic, eosinophilic and mixed-type exacerbation phenotypes of COPD. Am J Emerg Med 45: 237-241.
66.
Culpitt SV, de Matos C, Russell RE, et al. (2002): Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002; 165: 1371-1376.
67.
Thiam F, Phogat S, Abokor FA, et al. (2023): In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 24: 298.
68.
Ruscitti C, Radermecker C, Marichal T (2024): Journey of monocytes and macrophages upon influenza A virus infection. Curr Opin Virol 66: 101409.
69.
Birkle T, Brown GC (2021): I’m infected, eat me! Innate immunity mediated by live, infected cells signaling to be phagocytosed. Infect Immun 89: e00476-20.
70.
Li H, Wang A, Zhang Y, et al. (2023): Diverse roles of lung macrophages in the immune response to influenza A virus. Front Microbiol 14: 1260543.
71.
Tripathy AS, Vishwakarma S, Trimbake D, et al. (2021): Pro-inflammatory CXCL-10, TNF-, IL-1, and IL-6: biomarkers of SARS-CoV-2 infection. Arch Virol 166: 3301-3310.
72.
Pan P, Shen M, Yu Z, et al. (2021): SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 12: 4664.
73.
Vaz de Paula CB, Nagashima S, Liberalesso V, et al. (2021): COVID-19: Immunohistochemical analysis of TGF- signaling pathways in pulmonary fibrosis. Int J Mol Sci 23: 168.
74.
Ahmad F, Rani A, Alam A, et al. (2022): Macrophage: A cell with many faces and functions in tuberculosis. Front Immunol 13: 747799.
75.
Rothchild AC, Olson GS, Nemeth J, et al. (2019): Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci Immunol 4: eaaw6693.
76.
Tang PJ, Wu MY (2017): Progress in immune response and immune escape mechanisms in Mycobacterium tuberculosis infection. J Tuberculosis Lung Health 6: 181-186.
77.
Li N, Song YJ, Chu YF (2024): Progress in the immune escape mechanism in Mycobacterium tuberculosis. Sci Bull 69: 531-41.
78.
Ge P, Lei Z, Yu Y, et al. (2022): M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy 18: 576-594.
79.
Jaiswal S, Fatima S, Velarde de la Cruz E, et al. (2025): Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb) 152: 102615.
80.
Evangelatos G, Koulouri V, Iliopoulos A, et al. (2020): Tuberculosis and targeted synthetic or biologic DMARDs, beyond tumor necrosis factor inhibitors. Ther Adv Musculoskelet Dis 2020; 12: 1759720x20930116.
81.
Herrera MT, Guzmán-Beltrán S, Bobadilla K, et al. (2022): Human pulmonary tuberculosis: understanding the immune response in the bronchoalveolar system. Biomolecules 12: 1148.
82.
Omoteso OA, Fadaka AO, Walker RB, et al. (2025): Innovative strategies for combating multidrug-resistant tuberculosis: Advances in drug delivery systems and treatment. Microorganisms 13: 722.
83.
Driscoll CB, Rich JM, Isaacson D, et al. (2025): Tumor necrosis factor-alpha inhibitor use and malignancy risk: A Systematic review and patient level meta-analysis. Cancers (Basel) 17: 390.
84.
Qiao Y, Fu E (2022): Advances in the study of tumor-associated macrophages in lung cancer. Zhongguo Fei Ai Za Zhi 25: 34-39.
85.
Qian BZ, Pollard JW (2010): Macrophage diversity enhances tumor progression and metastasis. Cell 141: 39-51.
86.
Astekar M, Metgud R, Sharma A, et al. (2013): Hidden keys in stroma: Unlocking the tumor progression. J Oral Maxillofac Pathol 17: 82-88.
87.
Yang L, Dong Y, Li Y, et al. (2019): IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-B/Notch1 pathway in non-small cell lung cancer. Int J Cancer 145: 1099-1110.
88.
Yu J, Xu Z, Guo J, et al. (2021): Tumor-associated macrophages (TAMs) depend on MMP1 for their cancer-promoting role. Cell Death Discov 7: 343.
89.
Wang S, Wang J, Chen Z, et al. (2024): Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 8: 31.
90.
Rannikko JH, Hollmén M (2024): Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 131: 627-640.
91.
Xiang X, Wang J, Lu D, et al. (2021): Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6: 75.
92.
Divangahi M, Aaby P, Khader SA, et al. (2021): Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol 22: 2-6.
93.
Zahalka S, Starkl P, Watzenboeck ML, et al. (2022): Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 15: 896-907.
94.
Zhao S, Zhong Y, Fu X, et al. (2019): H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock 51: 401-406.
95.
Ochando J, Mulder WJM, Madsen JC, et al. (2023): Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 19: 23-37.
96.
Quintin J, Saeed S, Martens JHA, et al. (2012): Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12: 223-232.
97.
Ferreira AV, Domínguez-Andrés J, Merlo Pich LM, et al. (2024): Metabolic regulation in the induction of trained immunity. Semin Immunopathol 46: 7.
98.
Yao Y, Jeyanathan M, Haddadi S, et al. (2018): Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175: 1634-1650.e17.
99.
Aegerter H, Kulikauskaite J, Crotta S, et al. (2020): Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat Immunol 21: 145-157.
100.
Kalafati L, Kourtzelis I, Schulte-Schrepping J, et al. (2020): Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183: 771-785.e12.
101.
Bekkering S, Domínguez-Andrés J, Joosten LAB, et al. (2021): Trained immunity: Reprogramming innate immunity in health and disease. Annu Rev Immunol 39: 667-693.
102.
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, et al. (2022): Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 23: 1687-1702.
103.
Foster M, Hill PC, Setiabudiawan TP, et al. (2021): BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 301: 122-144.
104.
Lin M, Yang Z, Yang Y, et al. (2022): CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy. Nano Today 42: 101359.
105.
Subramanian S, Busch CJ, Molawi K, et al. (2022): Long- term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nat Immunol 3: 458-468.
106.
Guo Y, Bao Q, Hu P, et al. (2023): Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy. Nat Commun 14: 7306.
107.
Zheng X, Xing Y, Sun K, et al. (2023): Combination therapy with resveratrol and celastrol using folic acid-functionalized exosomes enhances the therapeutic efficacy of sepsis. Adv Healthc Mater 12: e2301325.
108.
Bai X, Chen Q, Li F, et al. (2024): Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy. Nat Commun 15: 6844.
109.
Cassetta L, Pollard JW (2018): Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 17: 887-904.
110.
Bao Y, Wang G, Li H (2024): Approaches for studying human macrophages. Trends Immunol 45: 237-247.
111.
Martinez FO, Gordon S (2014): The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6: 13.
112.
Neupane AS, Willson M, Chojnacki AK, et al. (2020): Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183: 110-125.e11.
113.
Jin H, Liu K, Tang J, et al. (2021): Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat Commun 12: 2863.
114.
Pahari S, Arnett E, Simper J, et al. (2023): A new tractable method for generating human alveolar macrophage-like cells in vitro to study lung inflammatory processes and diseases. mBio 14: e0083423.