Central European Journal of Immunology
eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

Curcumin modulates inflammatory responses in peripheral blood mononuclear cells from women with gestational diabetes mellitus

Zhenzhen Liu
1
,
Liu Zheng
1
,
Yao Wu
1
,
Huijuan Li
1
,
Junfang Liu
1

  1. Department of Obstetrics, Wu’an First People’s, Hospital, Handan, Hebei Province, 056300, China
Cent Eur J Immunol 2025; 50 (3)
Online publish date: 2025/09/15
Article file
- Curcumin modulates.pdf  [0.17 MB]
Get citation
 
PlumX metrics:
 
1. Tossetta G, Fantone S, Gesuita R, et al. (2022): HtrA1 in gestational diabetes mellitus: A possible biomarker? Diagnostics 12: 2705.
2. Perugini J, Di Mercurio E, Tossetta G, et al. (2019): Biological effects of ciliary neurotrophic factor on hMADS adipocytes. Front Endocrinol 10: 768.
3. Tossetta G, Piani F, Borghi C, Marzioni D (2023): Role of CD93 in health and disease. Cells 12: 1778.
4. Piani F, Tossetta G, Cara-Fuentes G, et al. (2023): Diagnostic and prognostic role of CD93 in cardiovascular disease: a systematic review. Biomolecules 13: 910.
5. Roncarolo MG, Battaglia M (2007): Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol 7: 585-598.
6. Deshmukh H, Way SS (2019): Immunological basis for recurrent fetal loss and pregnancy complications. Annu Rev Pathol 14: 185-210.
7. Chen J, Zhao L, Wang D, et al. (2019): Contribution of regulatory T cells to immune tolerance and association of microRNA 210 and Foxp3 in preeclampsia. Mol Med Rep 19: 1150-1158.
8. Corthay A (2009): How do regulatory T cells work? Scand J Immunol 70: 326-336.
9. Vignali DA, Collison LW, Workman CJ (2008): How regulatory T cells work. Nat Rev Immunol 8: 523-532.
10. Hosseini S, Shokri F, Pour SA, et al. (2016): A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J Reprod Immunol 116: 13-22.
11. Field EH, Kulhankova K, Nasr ME (2007): Natural Tregs, CD4+ CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol Res 39: 62-78.
12. Huang N, Chi H, Qiao J (2020): Role of regulatory T cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front Immunol 11: 1023.
13. Veldhoen M, Hocking RJ, Atkins CJ, et al. (2006): TGF in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179-189.
14. Konkel JE, Zhang D, Zanvit P, et al. (2017): Transforming growth factor- signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses. Immunity 46: 660-674.
15. Fujimoto Y, Kuramoto N, Yoneyama M, Azuma YT (2021): Interleukin-19 as an immunoregulatory cytokine. Curr Mol Pharmacol 14: 191-199.
16. Liu YS, Wu L, Tong XH, et al. (2011): Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 65: 503-511.
17. Aluvihare VR, Betz AG (2006): The role of regulatory T cells in materno-fetal tolerance. Immunology of Pregnancy. Springer; 171-178.
18. Guerin LR, Prins JR, Robertson SA (2009): Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 15: 517-535.
19. Bettelli E, Carrier Y, Gao W, et al. (2006): Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235-238.
20. Yang H, Qiu L, Chen G, et al. (2008): Proportional change of CD4+ CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril 89: 656-661.
21. Somerset DA, Zheng Y, Kilby MD, et al. (2004): Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112: 38-43.
22. Wang WJ, Hao CF, Yin GJ, et al. (2010): Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol 84: 164-170.
23. Lee S, Kim J, Hur S, et al. (2011): An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum Reprod 26: 2964-2971.
24. Wang WJ, Hao CF, Qu QL, et al. (2010): The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum Reprod 25: 2591-2596.
25. Sasaki Y, Sakai M, Miyazaki S, et al. (2004): Decidual and peripheral blood CD4+ CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10: 347-353.
26. Mei S, Tan J, Chen H, et al. (2010): Changes of CD4+ CD25 high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertil Steril 94: 2244-2247.
27. Wu L, Luo LH, Zhang YX, et al. (2014): Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod Biol Endocrinol 12: 74.
28. Nakashima A, Ito M, Shima T, et al. (2010): Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am J Reprod Immunol 64: 4-11.
29. Sifnaios E, Mastorakos G, Psarra K, et al. (2019): Gestational diabetes and T-cell (Th1/Th2/Th17/Treg) immune profile. In vivo 33: 31-40.
30. Sheu A, Chan Y, Ferguson A, et al. (2018): A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus. Diabetologia 61: 1633-1643.
31. Gupta SC, Patchva S, Aggarwal BB (2013): Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15: 195-218.
32. Xu XY, Meng X, Li S, et al. (2018): Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 10: 1553.
33. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012): Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39: 283-299.
34. Momtazi AA, Shahabipour F, Khatibi S, et al. (2016): Curcumin as a MicroRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol 171: 1-38.
35. Momtazi AA, Derosa G, Maffioli P, et al. (2016): Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20: 335-345.
36. Hatcher H, Planalp R, Cho J, et al. (2008): Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65: 1631-1652.
37. Baliga MS, Joseph N, Venkataranganna MV, et al. (2012): Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations. Food Funct 3: 1109-1117.
38. Sahebkar A, Mohammadi A (2019): Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun Rev 18: 738-748.
39. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018): Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J Cell Physiol 233: 830-848.
40. Tossetta G, Fantone S, Busilacchi EM, et al. (2022): Modulation of matrix metalloproteases by ciliary neurotrophic factor in human placental development. Cell Tissue Res 390: 113-129.
41. International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger BE, Gabbe SG, Persson B, et al. (2010): International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33: 676-682.
42. Queiroz AA, Franca EL, Hara CC, et al. (2019): Phenotypic characterization of regulatory T cells populations in maternal blood, cord blood and placenta from diabetic mothers. J Matern Fetal Neonatal Med 32: 1098-1104.
43. Sharma S, Banerjee S, Krueger PM, Blois SM (2022): Immunobiology of gestational diabetes mellitus in post-Medawar era. Front Immunol 12: 758267.
44. Eghbal-Fard S, Yousefi M, Heydarlou H, et al. (2019): The imbalance of Th17/Treg axis involved in the pathogenesis of preeclampsia. J Cell Physiol 234: 5106-5116.
45. Li N, Saghafi N, Ghaneifar Z, et al. (2021): Evaluation of the Effects of 1, 25VitD3 on Inflammatory Responses and IL-25 Expression. Front Genet 12: 779494.
46. Abdollahi E, Rezaee SA, Saghafi N, et al. (2020): Evaluation of the effects of 1, 25 vitamin D3 on regulatory T cells and T helper 17 cells in vitamin D-deficient women with unexplained recurrent pregnancy loss. Curr Mol Pharmacol 13: 306-317.
47. Farshchi M, Abdollahi E, Saghafi N, et al. (2022): Evaluation of Th17 and Treg cytokines in patients with unexplained recurrent pregnancy loss (URPL). J Clin Transl Res 8: 256-265.
48. Denney JM, Nelson EL, Wadhwa PD, et al. (2011): Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine 53: 170-177.
49. Brogin Moreli J, Cirino Ruocco AM, Vernini JM, et al. (2012): Interleukin 10 and tumor necrosis factor-alpha in pregnancy: aspects of interest in clinical obstetrics. ISRN Obstet Gynecol 2012: 230742.
50. Bates M, Quenby S, Takakuwa K, et al. (2002): Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum Reprod 17: 2439-2444.
51. Hanlon AM, Jang S, Salgame P (2002): Signaling from cytokine receptors that affect Th1 responses. Front Biosci 7: d1247-d1254.
52. Cao W, Wang X, Chen T, et al. (2018): Maternal lipids, BMI and IL 17/IL 35 imbalance in concurrent gestational diabetes mellitus and preeclampsia. Exp Ther Med 16: 427-435.
53. Abdollahi E, Saghafi N, Rezaee SAR, et al. (2020): Evaluation of 1, 25 (OH) 2D3 effects on FOXP3, ROR-t, GITR, and CTLA-4 gene expression in PBMCs of vitamin D-deficient women with unexplained recurrent pregnancy loss. Iran Biomed J 24: 295-305.
54. Mohammadi S, Abdollahi E, Nezamnia M, et al. (2021): Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int Immunopharmacol 90: 107195.
55. Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, et al. (2016): Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A comprehensive review. J Immunotoxicol 13: 286-300.
56. Angelo AG, Neves CT, Lobo TF, et al. (2018): Monocyte profile in peripheral blood of gestational diabetes mellitus patients. Cytokine 107: 79-84.
57. Abdollahi E, Rezaee SA, Saghafi N, et al. (2020): Evaluation of the effects of 1,25 vitamin D3 on regulatory T cells and T helper 17 cells in vitamin D-deficient women with unexplained recurrent pregnancy loss. Curr Mol Pharmacol 13: 306-317.
58. Liu D, Cao T, Wang N, et al. (2016): IL-25 attenuates rheumatoid arthritis through suppression of Th17 immune responses in an IL-13-dependent manner. Sci Rep 6: 1-11.
59. Plows JF, Stanley JL, Baker PN, et al. (2018): The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19: 3342.
60. Amirian A, Mahani MB, Abdi F (2020): Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstet Gynecol Sci 63: 407-416.
61. Yang Y, Liu L, Liu B, et al. (2018): Functional defects of regulatory T cell through interleukin 10 mediated mechanism in the induction of gestational diabetes mellitus. DNA Cell Biol 37: 278-285.
62. Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, et al. (2012): Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35: 2121-2127.
63. Ghaneifar Z, Yousefi Z, Tajik F, et al. (2020): The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 72: 2572-2583.
64. Kumagai A, Itakura A, Koya D, Kanasaki K (2018): AMP-activated protein (AMPK) in pathophysiology of pregnancy complications. Int J Mol Sci 19: 3076.
65. Ishii T, Miyazawa M, Takanashi Y, et al. (2014): Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion. Redox Biol 2: 679-685.
66. Handono K, Pratama MZ, Endharti AT, Kalim H (2015): Treatment of low doses curcumin could modulate Th17/Treg balance specifically on CD4+ T cell cultures of systemic lupus erythematosus patients. Cent Eur J Immunol 40: 461-469.
67. Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M (2020): Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol 85: 106607.
68. Ahmadi M, Hajialilo M, Dolati S, et al. (2020): The effects of nanocurcumin on Treg cell responses and treatment of ankylosing spondylitis patients: A randomized, double-blind, placebo-controlled clinical trial. J Cell Biochem 121: 103-110.
69. Wang J, Zhai X, Guo J, et al. (2019): Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-B axis: Implications for alleviating oral lichen planus. Int Immunopharmacol 75: 105761.
70. Abdollahi E, Saghafi N, Rezaee SAR, et al. (2020): Evaluation of 1, 25 (OH) 2D3 effects on FOXP3, ROR-t, GITR, and CTLA-4 gene expression in PBMCs of vitamin D-deficient women with unexplained recurrent pregnancy loss. Iran Biomed J 24: 295-305.
71. Xiao QP, Zhong YB, Kang ZP, et al. (2022): Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother Res 36: 1708-1723.
Copyright: © 2025 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2025 Termedia Sp. z o.o.
Developed by Bentus.